1-20 of 156 Search Results for

Gray iron

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047332
EISBN: 978-1-62708-234-1
... Abstract Deterioration of the vanes and a wearing away of the area surrounding the mainshaft-bearing housing of the pump bowl for a submersible water pump used in a well field were noticed during a maintenance inspection. The bowl was sand cast from gray iron and had been in service...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047297
EISBN: 978-1-62708-235-8
... Abstract Door-closer cylinder castings manufactured of class 30 gray iron were breaking during machining. The manufacturing source reported that a random sampling of castings from this lot had hardnesses from 180 to 210 HRB. Based on the color of the components, heat treatment of these castings...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047315
EISBN: 978-1-62708-225-9
... Abstract A sand-cast gray iron flanged nut was used to adjust the upper roll on a 3.05 m (10 ft) pyramid-type plate-bending machine. The flange broke away from the body of the nut during service. Analysis (visual inspection and 150x micrographs of sections etched with nital) supported...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0089567
EISBN: 978-1-62708-230-3
... Abstract A paper drier head manufactured from gray cast iron was removed from service as a result of NDE detection of crack-like surface discontinuities. This component was subjected to internal steam pressure to provide heat energy for drying. Investigation (visual inspection, chemical...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0047328
EISBN: 978-1-62708-231-0
... operating stress was needed to cause cracks. No cracks appeared when corrosion inhibitor was added to the cooling water. Corrosion prevention Inhibitors Water chemistry Gray iron Corrosion fatigue On cylinder inserts from a water-cooled locomotive diesel engine, cracks formed on the water...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047335
EISBN: 978-1-62708-219-8
..., and phosphorus. The high sulfur content is attributed to ferrous sulfide from a sulfate reducing bacteria frequently associated with clay soils. Reinforced coal tar protective coating was recommended. Bacteria Clay (material) Porosity Residues Soils (types) Gray iron Dealloying/selective leaching...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089526
EISBN: 978-1-62708-218-1
... Abstract A gray iron cylinder head cracked after approximately 16,000 km of service. The head was cracked on the rocker arm pan rail next to the No. 3 intake port and extended into the water jacket on the rocker-arm side of the head. Microporosity was revealed in the crack in the sections taken...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0048804
EISBN: 978-1-62708-230-3
... Abstract Several cases of failures in gray cast iron paper machine dryer rolls were evaluated. The rolls were found have ground outer cylindrical surfaces on which the paper web is dried. They were found to rotate about their longitudinal axes at speeds from 50 to 250 rpm while containing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0089617
EISBN: 978-1-62708-232-7
... Abstract A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten...
Image
Published: 01 June 2019
Fig. 1 Crack in a gray-iron cylinder head. (a) Crack on side of head next to manifold No. 3. (b) Another view of the same crack, which ends at the water jacket vent plug. Both 0.5× More
Image
Published: 01 June 2019
Fig. 1 Sand-cast gray iron pump bowl that failed due to graphitic corrosion and erosion. (a) Section through the pump bowl. (b) and (c) Macrographs of sections through the corroded areas in the pump shell and vane, respectively, showing graphitic residue not eroded by the action of water More
Image
Published: 01 June 2019
Fig. 2 Microstructures of the gray-iron drier head shown in Fig. 16. (a) Typical graphite distribution in the casting—type A, size 4 graphite. As-polished. 54x. (b) The matrix microstructure consists of ferrite with approximately 10% pearlite and 15% steadite. Etched with nital. 54x. (c More
Image
Published: 01 June 2019
Fig. 1 Views of a failed gray iron water pipe. (a) Outside surface of pipe at the region of the side-wall hole. 0.2x. (b) Close-up of hole from the outside. 0.4x. (c) Outside surface of the pipe 180 ° from the hole. 0.2x. (d) Close-up of hole from inside. 0.5x. (e) Section of pipe at hole area More
Image
Published: 01 June 2019
Fig. 1 Sand-cast gray iron flanged nut that failed by brittle fracture. (a) Flanged nut, which was used to adjust a plate-bending roll, and the flange that fractured from the body. Dimensions given in inches. (b) Micrograph of a specimen from the flange showing coarse pearlite matrix, large More
Image
Published: 01 June 2019
Fig. 1 Failed gray iron door-closer cylinder. (a) Overall view showing positions of fractures. 0.3x. (b) Parting line that was cracked on another casting. 1.5x More
Image
Published: 01 January 2002
Fig. 59 Tension and compression side of a gray iron loaded in bending. The fracture surface is devoid of any markings to indicate the fracture origin or direction of crack propagation. However, examination of the edge of the component at the fracture surface indicates that the tension side More
Image
Published: 01 January 2002
Fig. 1 Crack in a gray-iron cylinder head. (a) Crack on side of head next to manifold No. 3. (b) Another view of the same crack, which ends at the water jacket vent plug. Both 0.5× More
Image
Published: 01 January 2002
Fig. 17 Microstructures of the gray-iron drier head shown in Fig. 16 . (a) Typical graphite distribution in the casting—type A, size 4 graphite. As-polished. 54×. (b) The matrix microstructure consists of ferrite with approximately 10% pearlite and 15% steadite. Etched with nital. 54×. (c More
Image
Published: 01 January 2002
Fig. 33 Gray-iron cylinder block that cracked due to casting stresses. (a) External view. (b) Internal view showing crack site (arrow). 0.25×. Source: Ref 11 More
Image
Published: 01 January 2002
Fig. 34 Sections through gray-iron cylinder block. (a) Original design. 0.25×. (b) Improved design. 0.25×. (c) Enlarged section from (a). Actual size. Source: Ref 11 More