Skip Nav Destination
Close Modal
Search Results for
Graphitic corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 103 Search Results for
Graphitic corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047335
EISBN: 978-1-62708-219-8
... of cast iron pipe. Chemical analyses of the porous region had a substantial increase in carbon, silicon, phosphorus, and sulfur. The porous appearance and the composition of the soft porous residue confirmed graphitic corrosion. The selective leaching of iron leaves a residue rich in carbon, silicon...
Abstract
A section of cast iron water main pipe contained a hole approximately 6.4 x 3.8 cm (2.5 x 1.5 in.). The pipe was laid in clay type soil. Examination revealed severe pitting around the hole and at the opposite side of the outside diam. A macroscopic examination of a pipe section at the hole area showed that the porosity extended a considerable distance into the pipe wall. Metallographic examination revealed a graphite structure distribution expected in centrifugally cast iron with a hypoeutectic carbon equivalent. Chemical analyses of a nonporous sample had a composition typical of cast iron pipe. Chemical analyses of the porous region had a substantial increase in carbon, silicon, phosphorus, and sulfur. The porous appearance and the composition of the soft porous residue confirmed graphitic corrosion. The selective leaching of iron leaves a residue rich in carbon, silicon, and phosphorus. The high sulfur content is attributed to ferrous sulfide from a sulfate reducing bacteria frequently associated with clay soils. Reinforced coal tar protective coating was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091384
EISBN: 978-1-62708-219-8
... resulting in graphitic corrosion. Soils containing sulfates are particularly aggressive. Recommendations included pipe replacement. The wall thickness had been sufficiently reduced that the pipe could no longer support the required load. Water mains are designed for more than 100 years life. Ductile iron...
Abstract
A 25.4 cm (10 in.) diam gray cast iron water main pipe was buried in the soil beneath a concrete slab. The installation was believed to have been completed in the early 20th century. A leak from the pipe resulted in flooding of a warehouse. Once removed, the pipe revealed through-wall perforations and cracking along its axis. The perforations and the crack were at the 6 o'clock position. Investigation (visual inspection, radiography, unetched macrographs, and tensile testing) supported the conclusion that the failure occurred as result of years of exposure to ground water in the soil resulting in graphitic corrosion. Soils containing sulfates are particularly aggressive. Recommendations included pipe replacement. The wall thickness had been sufficiently reduced that the pipe could no longer support the required load. Water mains are designed for more than 100 years life. Ductile iron or coated and lined steel pipe, generally not susceptible to graphitic corrosion, were suggested as suitable replacement materials, and cathodic protection was also considered as a possibility.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047332
EISBN: 978-1-62708-234-1
... areas representing graphitic residue and corrosion products that were not removed by erosion. Exposure of the pump bowl to the well water resulted in graphitic corrosion, which generated a soft, porous graphitic residue impregnated with insoluble corrosion products. Failure of the pump bowl resulted...
Abstract
Deterioration of the vanes and a wearing away of the area surrounding the mainshaft-bearing housing of the pump bowl for a submersible water pump used in a well field were noticed during a maintenance inspection. The bowl was sand cast from gray iron and had been in service approximately 45 months. Visual examination of the vanes and the area surrounding the mainshaft-bearing housing revealed a dark corrosion product that was soft, porous, and of low mechanical strength. There were areas with severe erosion. Macrographs of sections through the pump shell and a vane showed darker areas representing graphitic residue and corrosion products that were not removed by erosion. Exposure of the pump bowl to the well water resulted in graphitic corrosion, which generated a soft, porous graphitic residue impregnated with insoluble corrosion products. Failure of the pump bowl resulted from the continuous erosion of the residue by action of the water within the pump.
Image
Published: 01 January 2002
Fig. 41 Graphitic corrosion of a gray cast iron sewer pipe section removed from the mud bottom of a seawater bay. Graphitic corrosion on the outside diameter surface is apparent for approximately 25% of the wall thickness. Courtesy of S.R. Freeman, Millennium Metallurgy, Ltd.
More
Image
Published: 15 January 2021
Fig. 41 Graphitic corrosion of a gray cast iron sanitary sewer pipe section removed from a high-rise commercial building. (a) Top of pipe section cracked longitudinally due to severe graphitic corrosion. (b) Graphitic corrosion on the inside diameter pipe surface is apparent for approximately
More
Image
Published: 01 June 2019
Image
in Failure of a Gray Iron Pump Bowl Because of Graphitic Corrosion from Exposure to Well Water
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Sand-cast gray iron pump bowl that failed due to graphitic corrosion and erosion. (a) Section through the pump bowl. (b) and (c) Macrographs of sections through the corroded areas in the pump shell and vane, respectively, showing graphitic residue not eroded by the action of water
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001165
EISBN: 978-1-62708-234-1
... corrosion resistance. Etching of the core structure showed a selective form of cast iron corrosion (spongiosis or graphitic corrosion) which lowered the strength of the cast iron enough that a knife could scrape off a black powder (10.85% C, 1.8% S, 1.45% P). Analysis showed that some of the “sulfate” found...
Abstract
After operating for six months, a pump impeller (of nickel-containing cast iron) showed considerable corrosion. Cross sections showed substantial penetration of the wall thickness without loss of material. The observed supercooled structure implied low strength but would not affect corrosion resistance. Etching of the core structure showed a selective form of cast iron corrosion (spongiosis or graphitic corrosion) which lowered the strength of the cast iron enough that a knife could scrape off a black powder (10.85% C, 1.8% S, 1.45% P). Analysis showed that some of the “sulfate” found in the scrubbing water was actually sulfide (including hydrogen sulfide) and was the main cause of corrosion.
Image
Published: 01 January 2002
Fig. 42 A 25 cm (10 in.) diam gray cast iron pipe that failed due to graphitic corrosion. The pipe was part of a water supply to a fire protection system. The external surface was covered with soil and the inside surface in contact with water. The pipe had been experienced cracking and through
More
Image
Published: 15 January 2021
Fig. 42 A 25 cm (10 in.) diameter gray cast iron pipe that failed due to graphitic corrosion. The pipe was part of a water supply to a fire-protection system. The external surface was covered with soil and the inside surface in contact with water. The pipe experienced cracking and through
More
Image
in Failure of a Cast Iron Water Pipe due to Graphitic Corrosion
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 1 A 25 cm (10 in.) diam gray cast iron pipe that failed due to graphitic corrosion. The pipe was part of a water supply to a fire protection system. The external surface was covered with soil and the inside surface in contact with water. The pipe had been experienced cracking and through
More
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... denickelification desiliconification dezincification galvanic corrosion graphitic corrosion intergranular corrosion pitting corrosion selective leaching uniform corrosion velocity-affected corrosion CORROSION is the electrochemical reaction of a material and its environment. This article addresses...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... there are three compositionally different phases within the material: ferrite, pearlite, and graphite. The corrosion process will initiate as uniform corrosion with the formation of an electrolytic microcell between the graphite cathode and ferrite or pearlite anode ( Ref 9 , 10 ). The process can turn...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001200
EISBN: 978-1-62708-221-1
... strength is decreased considerably in a ferritic bright border structure of low strength, such as is caused by surface decarburization. Incidentally, it may be mentioned here, even though it is of no consequence to the damage, that the inner wall was damaged by graphitic corrosion 1 ) ( Fig. 10...
Abstract
During the operation of tractors with cantilevered body, the lateral wall of the hypoeutectic cast iron cylinder blocks cracked repeatedly. Three of the blocks were examined. The grain structure of the thick-walled part consisted of uniformly distributed graphite of medium flake size in a basic mass of pearlite with little ferrite. But the thin-walled part showed a structure of dendrites of precipitated primary solid solution grains with pearlitic-ferritic structure and a residual liquid phase with granular graphite in the ferritic matrix. The structure was formed by undercooling of the residual melt. In this case, it was promoted by fast cooling of the thin wall and had comparatively low strength. The fracture formation in the cylinder blocks was ascribed primarily to casting stresses. They could be alleviated by better filleting of the transition cross sections. The fracture was promoted by the formation of undercooled microstructure of low strength in the thin-walled part. Similar damage appeared in a cylinder head, in which case, the cracks were promoted by a supercooled structure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090965
EISBN: 978-1-62708-221-1
... was within the center of the acceptance range. Microstructural evaluation indicated that the casting surface at the fracture contained corrosion damage, inclusions, and incomplete nodulization of the graphite ( Fig. 1a ). The etched matrix is shown in Fig. 1(b) . The core microstructure consisted...
Abstract
The upper frame from a large cone crusher failed in severe service after an unspecified service duration. The ductile iron casting was identified as grade 80-55-06, signifying minimum properties of 552 MPa (80 ksi) tensile strength, 379 MPa (55 ksi) yield strength, and 6% elongation. Investigation (visual inspection, chemical analysis, unetched 30x images, and 2% nital etched 30x images) was difficult because the fracture surface of the frame section was obliterated by postfracture corrosion. Repeated attempts at cleaning using progressively stronger chemicals revealed that no telltale fracture morphology remained. However, the investigation supported the conclusion that the crusher frame failed via brittle overload fracture, likely due to excessive service stresses and substandard mechanical properties. Recommendations included additional quality-control measures to provide better spheroidal graphite morphology at the frame surface.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001337
EISBN: 978-1-62708-215-0
... with chromium additions such as ASTM A213 Grade T11 or T22, which are resistant to graphitization damage. Boiler tubes Creep (materials) Graphitization, Heating effects Mechanical properties Microstructural effects Overheating ASTM A209 grade T1 UNS K11522 High-temperature corrosion and oxidation...
Abstract
A carbon-molybdenum (ASTM A209 Grade T1) steel superheater tube section in an 8.6 MPa (1250 psig) boiler cracked because of long-term overheating damage that resulted from prolonged exposure to metal temperatures between 482 deg C (900 deg F) and 551 deg C (1025 deg F). The outer diameter of the tube exhibited a crack (fissure) oriented approximately 45 deg to the longitudinal axis and 3.8 cm (1.5 in.) long. The inner diameter surface showed a fissure in the same location and orientation. Microstructure at the failure near the outer diameter surface exhibited evidence of creep cracking and creep void formation at the fissure. A nearly continuous band of graphite nodules was observed on the surface of the fissure. In addition to the graphite band formation, the microstructure near the failure exhibited carbide spheroidization from long-term overheating in all the tube regions examined. It was concluded that preferential nucleations of graphite nodules in a series of bands weakened the steel locally, producing preferred fracture paths. Formation of these graphite bands probably expedited the creep failure of the tube. Future failures may be avoided by using low-alloy steels with chromium additions such as ASTM A213 Grade T11 or T22, which are resistant to graphitization damage.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001050
EISBN: 978-1-62708-214-3
.... Fig. 5 Pitted edge of the shell and the surfaces that were in contact with the head. Arrow indicates the thick layer of corrosion products in the head-shell gap. Metallography Microstructural Analysis The unetched microstructure of the sample presented in Fig. 6 consisted of graphite...
Abstract
A steam-pressurized Yankee dryer shell ruptured during normal operation. Cracking had occurred around much of the circumference at the drive end of the shell, which measured 3.7 m (12 ft) in diameter by 3.4 m (11 ft) long with a head bolted to each end. The crack initiated at a 90 deg corner in contact with the edge of the head. The material was a hardened gray cast iron containing 2.8% Ni and 1.2% Mo. Based on the results of visual, nondestructive, metallographic, and chemical analyses, it was concluded that failure occurred after corrosion fatigue cracking had weakened the shell. An ultrasonic examination of all Yankee dryers of the same type was recommended to look for cracking at the edge of the shell. Modification of the head-to-shell joint was recommended as well.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001107
EISBN: 978-1-62708-214-3
..., along with sooty residue. Patterns similar to those associated with erosion/corrosion damage were observed. Microstructural examination of wasted areas revealed a bulk matrix composed of massive carbides, indicating that gross carburization and metal dusting had occurred. X-ray diffraction analysis...
Abstract
A 150 mm (6 in.) diam, 1.6 mm (0.065 in.) thick alloy 800 1iner from an internal bypass line in a hydrogen reformer was removed from a waste heat boiler because of severe metal loss. Visual and metallographic examinations of the liner indicated severe metal wastage on the inner surface, along with sooty residue. Patterns similar to those associated with erosion/corrosion damage were observed. Microstructural examination of wasted areas revealed a bulk matrix composed of massive carbides, indicating that gross carburization and metal dusting had occurred. X-ray diffraction analysis showed that the carbides were primarily chromium based (Cr 23 C 7 and Cr 7 C 3 ). The sooty substance was identified as graphite. Wasted areas were ferromagnetic and the degree of ferromagnetism was directly related to the degree of wastage. Three actions were recommended: (1) inspection of the waste heat boiler to determine the extent of metal damage in other areas by measuring the degree of ferromagnetism, (2) replacement of metal determined to be magnetic, and (3) closer monitoring of temperatures in the region of the reformer furnace outlet.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001279
EISBN: 978-1-62708-215-0
... outage. Boiler tubes Graphitization Mechanical properties ASME SA219-T1A UNS K12023 High-temperature corrosion and oxidation Creep fracture/stress rupture Background Applications The superheater tubes were from a utility boiler, a base-loaded unit that had been in service for 13...
Abstract
Tube 3 from a utility boiler in service for 13 years under operating conditions of 540 deg C (1005 deg F), 13.7 MPa (1990 psi) and 1,189,320 kg/h (2,662,000 lb/h) incurred a longitudinal rupture near its 90 deg bend while Tube 4 from the same boiler exhibited deformation near its bend. Metallographic examination revealed creep voids near the rupture in addition to graphite nodules. Exposure of the SA209 Grade T1A steel tubing to a calculated mean operating temperature of 530 deg C (983 deg F) for the 13 years resulted in graphitization and subsequent creep failure in Tube 3. The deformation in Tube 4 was likely the result of steam washing from the Tube 3 failure. Graphitization observed remote from the rupture in Tube 3 and in Tube 4 indicated that adjacent tubing also was susceptible to creep failure. In-situ metallography identified other graphitized tubes to be replaced during a scheduled outage.
Image
in Corrosion-Fatigue Cracking of Gray Iron Cylinder Inserts From a Water-Cooled Locomotive Diesel Engine
> ASM Failure Analysis Case Histories: Rail and Rolling Stock
Published: 01 June 2019
Fig. 2 Structure of the insert collar shown in Fig. 1 . (a) Corrosion-fatigue crack; as-polished section showing the flake graphite form. 20×. (b) Section etched with 3% nital; at the corrosion-fatigue crack, the structure is pearlite and ferrite. 75×. Source: Ref 1
More
1