Skip Nav Destination
Close Modal
By
Tito Luiz da Silveira, Francisco Solano Moreira, Miriam Conçeicão Garcia Chavez, Iain Le May
By
Sara Fernandez, María José Quintana, José Ovidio García, Luis Felipe Verdeja, Roberto González ...
Search Results for
Grain boundary sliding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 72
Search Results for Grain boundary sliding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure of Supports in a Petrochemical Product Transfer Line
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 2 Showing creep damage in the pipe in the form of grain boundary sliding and cracking. Unetched.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001687
EISBN: 978-1-62708-220-4
... properties. Grain boundary sliding and dislocation motion were enhanced, causing a local increase in the steady state strain rate and the premature failure of the tube. Grain boundary sliding Plastic deformation Spalling Voids HK UNS J94224 Creep fracture/stress rupture The petrochemical...
Abstract
Microstructural examinations on transverse cross sections of a steam reformer tube, showed the presence of large macrovoids elongated in the radial direction and emanating from the internal surface of the tube. The macrovoids were located at the interdendritic regions, and were partially filled by a Mn-Fe bearing chromium oxide film. The areas adjacent to the oxide film were chemically depleted in C, Cr and Mn and rich in Fe and Ni. Associated with this depletion were a large concentration of microvoids. It was suggested that the dissolution of carbides in areas surrounding the macrovoids and the concentration of stresses at their tips, caused extensive localized plastic deformation which led to the formation of microvoids and subsequently to the spalling of the oxide film. The non-protective character of the film induced a progressive deterioration of the grain boundaries properties. Grain boundary sliding and dislocation motion were enhanced, causing a local increase in the steady state strain rate and the premature failure of the tube.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001736
EISBN: 978-1-62708-220-4
... mechanism, namely grain boundary sliding, relating to the periodic nature of the loading, with high residual stresses being present. Grain boundary sliding Petrochemical equipment Transfer piping Welded joints 316 UNS S31600 Creep fracture/stress rupture Leakage was detected at the welds...
Abstract
Leakage was detected at the welds between stiffening plates and the pipe in a transfer line carrying butane and related petrochemical compounds. The line and reinforcing rings were of AISI 316 stainless steel, the pipe being of 508 mm diam and 6.25 mm wall thickness. The design temperature and pressure were 621 deg C and 2.75 kPa, respectively, while the operating conditions were 579 deg C and 1.03 kPa. The line was insulated. Failure occurred after approximately 90,000 h of operation, shutdowns being approximately two per annum. The cracking occurred at the toe of welds between the plates and the pipe. The creep damage failure was attributed to repeated relaxation cycles of very high thermal stresses of resulting from the periodic shutdowns, temperature fluctuations during service, or both. This failure emphasized the information available from an evaluation of the operative creep mechanism, namely grain boundary sliding, relating to the periodic nature of the loading, with high residual stresses being present.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001011
EISBN: 978-1-62708-229-7
... transfer zone of the coil. It showed that many damage mechanisms may combine in the transition from fracture initiation to final failure. The presence of grain boundary sliding as an indication of creep damage was useful in the characterization of the stress level as high and showed that the process...
Abstract
After some 87,000 h of operation, failure took place in the bend of a steam pipe connecting a coil of the third superheater of a steam generator to the outlet steam collector. The unit operated at 538 deg C and 135 kPa, producing 400 t/h of steam. The 2.25Cr-1Mo steel pipe in which failure took place was 50.8 mm in diam with a nominal wall thickness of 8 mm. It connected to the AISI 321 superheater tube by means of a butt weld and was one of 46 such parallel connecting tubes. The Cr-Mo tubing was situated outside the heat transfer zone of the superheater. The overall sequence of failure involved overheating of the Cr-Mo outlet tubes, heavy oxidation, oxide cracking on thermal cycling, thermal fatigue cracking plus oxidation, creep-controlled crack growth, and rapid plastic deformation and rupture. This failure was indicative of excess temperature of the steam coming from the heat transfer zone of the coil. It showed that many damage mechanisms may combine in the transition from fracture initiation to final failure. The presence of grain boundary sliding as an indication of creep damage was useful in the characterization of the stress level as high and showed that the process of creep was not operative throughout the life of the equipment.
Image
in Metallographic Studies of a Reformer Tube Failure Due to Thermal Fatigue
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 6 Details (three views at increasing magnification) of remnant external cracks adjacent to the repair weld (unetched material). The grain boundary creep pore was formed by grain boundary sliding.
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001675
EISBN: 978-1-62708-220-4
... removal of the external cracks by grinding. Fig. 6 Details (three views at increasing magnification) of remnant external cracks adjacent to the repair weld (unetched material). The grain boundary creep pore was formed by grain boundary sliding. Fig. 7 Details of cracking shown...
Abstract
The failure of a reformer tube furnace manifold has been examined using metallography. It has been shown that the cause of failure was thermal fatigue; the damage was characterized by the presence of voids produced by creep mechanisms operating during the high temperature cycle under high local stress. The study indicates that standard metallographic procedures can be used to identify failure modes in high temperature petrochemical plants.
Image
in Metallographic Studies of a Reformer Tube Failure Due to Thermal Fatigue
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 7 Details of cracking shown in Figure 5 with the SEM (unetched). The damage was produced by grain boundary sliding in alternate directions following reversal of the local stress. Figures 7e and 7f show, respectively, the distribution of chromium and nickel in the area of 7d .
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001598
EISBN: 978-1-62708-232-7
... uses single crystal turbine blades. Obtaining a single crystal in the drain tube is highly unlikely. Therefore, the high temperature weaknesses of the grain boundaries and the tendency of grain boundary sliding and void formation need to be addressed. One possible solution to the tendency for creep...
Abstract
The metallurgical condition of a cylindrical induction melter (CIM) vessel was evaluated after approximately 375 h of operation over a two-year span at temperatures between 1400 to 1500 deg C. Wall thinning and significant grain growth was observed in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with localized overheating and creep. The observed degradation resulted from cumulative service at elevated temperature. A recommendation was made to implement a support for the conical section of the CIM and to increase the wall thickness of the drain tube. Thus, the possibility of drain tube misalignment in the induction coils and localized over heating will be minimized. In addition, the use of grain stabilized Pt/Rh alloy should be evaluated as a method to prevent grain growth.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
... components superplastic deformation boundary sliding dislocation creep high-strength low alloy steel decohesions traction testing grain size elongation Ti-Nb microalloyed ultrafine-grained steel (UGS steel, general) high-strength low-alloy steel (HSLA steel, general) Introduction A material...
Abstract
This paper describes the superplastic characteristics of shipbuilding steel deformed at 800 °C and a strain rate less than 0.001/s. After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it occurs in stage III creep behavior. The behavior is confirmed through the Ashby-Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001004
EISBN: 978-1-62708-229-7
...) fracture, viz., in low temperature RTE fracture, initiation and propagation of microcracks are rate controlling while at high temperatures the nucleation and growth of creep cavitation, dislocation mobility and grain boundary sliding are important. Wilkinson et al ( 6 ) observed that the ductility of P...
Abstract
The results of a failure analysis of a series of Cr-Mo-V steel turbine studs which had experienced a service lifetime of some 50,000 h are described. It was observed that certain studs suffered complete fracture while others showed significant defects located at the first stress bearing thread. Crack extension was the result of marked creep embrittlement and reverse temper embrittlement (RTE). Selected approaches were examined to assess the effects of RTE on the material toughness of selected studs. It was observed that Auger electron microscopy results which indicated the extent of grain boundary phosphorus segregation exhibited a good relationship with ambient temperature Charpy data. The electrochemical polarization kinetic reactivation, EPR, approach, however, proved disappointing in that the overlapping scatter in the minimum current density, Ir, for an embrittled and a non-embrittled material was such that no clear decision of the toughness properties was possible by this approach. The initial results obtained from small punch testing showed good agreement with other reported data and could be related to the FATT. Indeed, this small punch test, combined with a miniature sample sampling method, represents an attractive approach to the toughness assessment of critical power plant components.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... enough, dislocations rearrange and annihilate through recovery events. On a more macroscopic scale, creep deformation also produces microstructural changes, such as slip bands, grain-boundary sliding, cavity formation and growth, and cracking (grain boundary, interphase boundary, and transgranular...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... of creep may manifest as grain-boundary movement or sliding, dislocation glide, dislocation glide plus climb, and/or the diffusion of chemical species within the lattice. The rate equation that governs most forms of crystalline creep may be simplified to the following functional form ( Ref 2 ): (Eq 2...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... the grain-boundary sliding Grain-boundary carbides (in polycrystalline materials) to reduce the creep rate by inhibiting grain-boundary sliding The way in which cracking occurs could be envisioned as oxidation of a grain boundary at high temperatures and cracking by slip-band impingement at low...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... and annihilate through recovery events. Creep deformation also produces microstructural changes, such as slip bands, grain-boundary sliding, cavity formation and growth, and cracking (grain boundary, interphase boundary, and transgranular). There are others, some of which are very important. One is in situ...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001291
EISBN: 978-1-62708-215-0
... produced by fatigue, which grew from the intergranular crack tips.2% nital etch. Crack Origins/Paths Sections through the cracking revealed intergranular cracks penetrating approximately 0.13 mm (0.005 in.) into the steel, along the prior-austenite grain boundaries. Most of these cracks were...
Abstract
Examination of several fighter aircraft main landing gear legs revealed unusual cracking in the hard chromium plating that covered the sliding section of the inner strut. The cracking was associated with cracks in the 35 NCD 16 steel beneath the plating. A detailed investigation revealed that the cracking was caused by the combination of incorrect grinding procedure, the presence of hydrogen, and fatigue. The grinding damage generated tensile stresses in the steel, which caused intergranular cracking during the plating cycle. The intergranular cracks were initiation sites for fatigue crack growth during service. It was recommended that the damaged undercarriage struts be withdrawn from service pending further analysis and development of a repair technique.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... to as plane-strain microvoid coalescence) or occurs preferentially in the limited region adjacent to the grain boundary (resulting in a dimpled intergranular fracture surface). These types of ductile and brittle fractures are discussed in more detail later in this article. Fig. 9 Observed microscopic...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... with smooth grain boundaries Likely either improper thermal processing or environmental assisted fracture (high temperature, corrosive environment) Less common is low Δ K fatigue Intergranular with dimpled grain boundaries “Decohesive rupture—fracture at high fraction of melting point...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001801
EISBN: 978-1-62708-241-9
...”; surface is rough, but no apparent cracks Fig. 17 Surface morphology of SEM sample holder The fractured surface morphology for both rods was shown in Figs. 10 and 11 ; both samples revealed grain boundary fractures, akin to grain boundary decohesion. The general surface morphology...
Abstract
Both rods in a Harrington rod cervical stent failed after a short time in service. Metallurgical analysis revealed a significant number of notches as well as enlarged grain size in one of the two rods, rough shallow-cracked surfaces along the bend profiles, possible signs of corrosion, and fractures (on both rods) near indentations imparted by retaining clamps. The observations suggest that surface roughness and bending defects initiated cracking that led to the fatigue failure of the compromised rod, followed some time later by the overload fracture of the second rod.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
...: Ref 55 Microstructure Microstructural inhomogeneity (e.g., presence of second phases, interphase boundaries, and grain boundaries) promotes galvanic corrosion ( Ref 58 – 60 ). During the galvanic corrosion process, active regions such as grain boundaries and interphase boundaries tend...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... alloys (up to ~1000 HV) by means of a pin abrasion test and employing abrasive papers with SiC grains with three different average diameters (i.e., three different attack angles, approximately 15, 10, and 5°). The researchers determined that Φ initially increases with hardness up to ~400 kg/mm 2...
Abstract
This article considers the main characteristics of wear mechanisms and how they can be identified. Some identification examples are reported, with the warning that this task can be difficult because of the presence of disturbing factors such as contaminants or possible additional damage of the worn products after the tribological process. Then, the article describes some examples of wear processes, considering possible transitions and/or interactions of the mechanism of fretting wear, rolling-sliding wear, abrasive wear, and solid-particle erosion wear. The role of tribological parameters on the material response is presented using the wear map concept, which is very useful and informative in several respects. The article concludes with guidelines for the selection of suitable surface treatments to avoid wear failures.
1