1-20 of 247 Search Results for

Gas welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 30 August 2021
Fig. 35 Radiograph showing cluster porosity in gas metal arc welding process due to disruption of shielding gas. Incomplete penetration (IP) of the weld root is also shown. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047645
EISBN: 978-1-62708-229-7
... Abstract An outer fan-duct assembly of titanium alloy Ti-5Al-2.5Sn (AMS 4910) for a gas-turbine fan section cracked 75 mm (3 in.) circumferentially through a repair weld in an arc weld in the front flange-duct segment. Examination of the crack with a binocular microscope revealed no evidence...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001433
EISBN: 978-1-62708-235-8
... band suggested that the weld had been made by the oxy-gas process. A lack of root fusion over most of its length was evident. Examination of the fracture faces, which were of crystalline appearance indicative of brittle behavior, indicated incomplete fusion of the weld root. Microscopic examination...
Image
Published: 01 June 2019
Fig. 2 Full-penetration autogenous gas tungsten arc weld (GTAW) joint More
Image
Published: 01 January 2002
Fig. 20 Section through an automatic gas tungsten arc weld containing voids caused by incomplete fusion. (a) Base metal at left is Incoloy 800 nickel alloy, that at right is 2.25Cr-1.0Mo alloy steel. Filler metal was ERNiCr-3, used with cold wire feed. Macrograph. 1×. (b) Micrograph More
Image
Published: 01 January 2002
Fig. 43 Incomplete fusion in a pulsed gas metal arc spot weld involving ERNiCu-7 (Monel 60), 0.89 mm (0.035 in.) diameter filler metal, copper-nickel to steel weldment. Etchant, 50% nitric-50% acetic acid. (a) View showing IF flaw. 30×. (b) View showing that IF was eliminated by tapering More
Image
Published: 01 January 2002
Fig. 58 Gas porosity in electron beam welds of low-carbon steel and titanium alloy. (a) Gas porosity in a weld in rimmed AISI 1010 steel. Etched with 5% nital. 30×. (b) Massive voids in weld centerline of 50 mm (2 in.) thick titanium alloy Ti-6Al-4V. 1.2× More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047621
EISBN: 978-1-62708-229-7
..., and flange and more skillful welding techniques to avoid undercutting and unfused interfaces. Arc welding Combustion chamber Flanges Gas turbine engines Pipe fitting Undercuts Welding defects Inconel 718 (Nickel-base superalloy) UNS N07718 Fatigue fracture Joining-related failures...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001647
EISBN: 978-1-62708-235-8
... Abstract An unacceptable degree of porosity was identified in several closure welds on stainless steel containers for plutonium-bearing materials. The pores developed in the weld tie-in region due to gas trapped by the weld pool during the closure process. This paper describes the efforts...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
.... The increase in the weld nitrogen level was a direct result of inadequate argon gas shielding of the molten weld puddle. Two areas of inadequate shielding were identified: improper gas flow rate for a 19 mm (0.75 in.) diam gas lens nozzle, and contamination of the manifold gas system. Recommendations included...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047598
EISBN: 978-1-62708-217-4
... Abstract Two aircraft-engine tailpipes of 19-9 DL stainless steel (AISI type 651) developed cracks along longitudinal gas tungsten arc butt welds after being in service for more than 1000 h. Binocular-microscope examination of the cracks in both tailpipes revealed granular, brittle-appearing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
... Abstract A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001164
EISBN: 978-1-62708-227-3
... Abstract Plate perforation occurred in the cylindrical section and walls of the inlet foot (2.38 mm thick Incoloy 825 plate welded using INCO welding rod 135) of an inert gas fire prevention system in an oil tanker. Cross-sectional microprobe analysis showed the corrosion product to contain...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046252
EISBN: 978-1-62708-229-7
... of the piping and bellows. Bellows Expansion joints Sigma phase Weld joints 321 UNS S32100 Intergranular fracture Fatigue fracture A type 321 stainless steel bellows expansion joint on a 17-cm (6 3 4 -in.) OD inlet line in a gas-turbine test facility cracked during operation. Cracking...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001737
EISBN: 978-1-62708-229-7
... Abstract The hot gas casing of a gas turbine used for peak load power production had developed extensive cracking during operation. The operating time was 18,000 h, and it had been subjected to 1,600 operating cycles. The gas temperature on the hot side was 985 deg C, on the cold side 204 deg C...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001590
EISBN: 978-1-62708-228-0
... Abstract This case study demonstrates that Alloy 601 (UNS N06601) is susceptible to strain-age cracking. The observation illustrates the potential importance of post weld heat treatment to the successful utilization of this alloy in certain applications. Steam reforming Inconel 601 UNS...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001067
EISBN: 978-1-62708-214-3
.... The seam had been weld-repaired twice, and the repair welds had been locally stress relieved. Application A CO 2 absorber is used to remove CO 2 from the process gas so the gas can be reused in the chemical plant. Carbon dioxide is removed by passing it through a solution ( Table 1 ) flowing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001714
EISBN: 978-1-62708-232-7
..., carburization as an initiation condition for metal dusting was found. The welding protrusion will change laminar flow of the gas, to turbulent flow. The solid particles in the turbulent gas, will remove the chromia layer behind the welding protrusion and weaken the resistance of the pipe surface...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001570
EISBN: 978-1-62708-220-4
... Abstract Corrosion failure occurred in a titanium clad tubesheet because of a corrosive tube-side gas-liquid mixture leaking through fatigue cracks in the seal welds at tube-to-tubesheet joints. The tubesheet was a carbon steel plate clad with titanium on the tube side face. The seal weld...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
... Abstract A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which...