Skip Nav Destination
Close Modal
Search Results for
Gas carburizing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 63 Search Results for
Gas carburizing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 8 Fatigue fracture in gas-carburized and modified 4320 steel showing overview of initiation, stable crack propagation, and unstable crack propagation, with extent of stable crack indicated by dashed line
More
Image
Published: 15 January 2021
Fig. 8 Fatigue fracture in gas-carburized and modified 4320 steel showing overview of initiation, stable crack propagation, and unstable crack propagation, with extent of stable crack indicated by dashed line
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0092148
EISBN: 978-1-62708-235-8
... Abstract Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized...
Abstract
Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized. The cylinder in which the spool fitted was made of 1117 steel, also gas carburized. Investigation (visual inspection, low magnification images, 400x images, metallographic exam, and hardness testing) supported the conclusion that momentary sliding contact between the spool and the cylinder wall caused unstable retained austenite in the failed cylinder to transform to martensite. The increase in volume resulted in sufficient size distortion to cause interference between the cylinder and the spool, seizing, and loss of flow control. The failed parts had been carburized in a process in which the carbon potential was too high, which resulted in a microstructure having excessive retained austenite after heat treatment. Recommendations included modifying the composition of the carburizing atmosphere to yield carburized parts that did not retain significant amounts of austenite when they were heat treated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048253
EISBN: 978-1-62708-234-1
... Abstract Two intermediate impeller drive gears (made of AMS 6263 steel, gas carburized, hardened, and tempered) exhibited evidence of pitting and abnormal wear after production tests in test-stand engines. The gears were examined for hardness, case depth, and microstructure of case and core...
Abstract
Two intermediate impeller drive gears (made of AMS 6263 steel, gas carburized, hardened, and tempered) exhibited evidence of pitting and abnormal wear after production tests in test-stand engines. The gears were examined for hardness, case depth, and microstructure of case and core. It was found that gear 1 had a lower hardness than specified while the case hardness of gear 2 was found to be within limits. Both the pitting and the wear pattern were revealed to be more severe on gear 1 than on gear 2. Surface-contact fatigue (pitting) of gear 1 (cause of lower carbon content of the carburized case and hence lower hardness) was found to be the reason for failure. It was recommended that the depth of the carburized case on impeller drive gears be increased from 0.4 to 0.6 mm to 0.6 to 0.9 mm to improve load-carrying potential and wear resistance. A minimum case-hardness requirement was set at 81 HRA.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001844
EISBN: 978-1-62708-241-9
... combined with the observation of intergranular fracture surfaces and the presence of secondary microcracks in the case layer point to hydrogen embrittlement as the primary cause of failure. It is likely that hydrogen absorption occurred during the gas carburizing process. cylindrical spiral gear...
Abstract
A cylindrical spiral gear, part of a locomotive axle assembly, cracked ten days after it had been press-fit onto a shaft, after which it sat in place as other repairs were made. Workers at the locomotive shop reported hearing a sound, and upon inspecting the gear, found a crack extending radially from the bore to the surface of one of the tooth flanks. The crack runs the entire width of the bore, passing through an oil hole in the hub, across the spoke plate and out to the tip of one of the teeth. Design requirements call for the gear teeth to be carburized, while the remaining surfaces, protected by an anti-carburizing coating, stay unchanged. Based on extensive testing, including metallographic examination, microstructural analysis, microhardness testing, and spectroscopy, the oil hole was not protected as required, evidenced by the presence of a case layer. This oversight combined with the observation of intergranular fracture surfaces and the presence of secondary microcracks in the case layer point to hydrogen embrittlement as the primary cause of failure. It is likely that hydrogen absorption occurred during the gas carburizing process.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001043
EISBN: 978-1-62708-214-3
... formations in a martensite matrix and outlining of prior-austenite grains by a network of fine, white lines. These features indicated that the material had been transformed by carburization by the impinging gas. The outer surface exhibited a heavy scale deposit and numerous cracks that originated...
Abstract
A 76 mm (3 in.) type 304 stainless steel tube that was used as a heat shield and water nozzle support in a hydrogen gas plant quench pot failed in a brittle manner. Visual examination of a sample from the failed tube showed that one lip of the section was eroded from service failure, whereas the opposite side exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide formations in a martensite matrix and outlining of prior-austenite grains by a network of fine, white lines. These features indicated that the material had been transformed by carburization by the impinging gas. The outer surface exhibited a heavy scale deposit and numerous cracks that originated at the surface of the tube. The cracks were covered with scale, indicating that thermal fatigue (heat cracking) had occurred. Chemical analysis confirmed that the original material was type 304 stainless steel that had been through-carburized by the formation of an endothermic gas mixture. It was recommended that plant startup and shutdown procedures be modified to reduce or eliminate the presence of the carburizing gas mixture.
Image
Published: 01 January 2002
Fig. 72 Micrographs showing different degrees of decarburization. (a) Total decarburization caused by a furnace leak during gas carburizing of AISI 1018 steel. 500×; 1% nital etch. (b) Partially decarburized specimen. 190×. Source: Ref 30
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001209
EISBN: 978-1-62708-224-2
... operating stress if they had been welded satisfactorily and hardened correctly, and whether it made any sense to case harden highly stressed chains of this type. Chains Gas carburizing Wear Welded joints Steel chain Joining-related failures (Other, miscellaneous, or unspecified) wear Heat...
Abstract
Three links of a chain showing unusually strong wear were examined. Corresponding to the stress, the wear was strongest in the bends of the links, but it was especially pronounced in the bend in which the butt weld seam was located. Investigation showed the links were manufactured from an unkilled carbon-deficient steel, and were case hardened to a depth of 0.8 to 0.9 mm. The peripheral structure at the places not showing wear consisted of coarse acicular martensite with a high percentage of retained austenite. The links therefore were strongly overheated, probably directly heated during case hardening. The butt weld seams were not tight and were covered with oxide inclusions. Given that wear occurred preferentially at the welds it may be concluded that this weld defect contributed to the substantial wear. This leaves unanswered whether these chains could have withstood the high operating stress if they had been welded satisfactorily and hardened correctly, and whether it made any sense to case harden highly stressed chains of this type.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001214
EISBN: 978-1-62708-235-8
... to have a lower case depth, carburize less deeply, and prevent overheating that causes brittleness and leads also to increased case depth, or else use a fine-grained steel of lower hardenability. Case depth Cracking (fracturing) Gas carburizing Overheating Sleeves C15 Heat treating-related...
Abstract
A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer had specified a 2 mm case depth and a hardness of at least HRC 55 at a depth of 1.5 mm. An etched cross section of the cracked end showed that the case layer had a depth of 2.3 mm, so that the sleeve was almost through-hardened at the flat ends. While the core material with the full wall thickness had the quench structure of low-carbon steel, the structure of the flattened area consisted of coarse acicular martensite with a small amount of pearlite (quench troostite) and ferrite. Therefore the sleeve was overheated and probably quenched directly from case. To prevent damage, it would have been necessary to have a lower case depth, carburize less deeply, and prevent overheating that causes brittleness and leads also to increased case depth, or else use a fine-grained steel of lower hardenability.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048261
EISBN: 978-1-62708-225-9
... fillets as a result of through hardening. Dimensions given in inches The ring gear, machined from a forged blank made of 4817 steel, had been gas carburized at 925 °C (1700 °F), cooled to 815 °C (1500 °F), press quenched in oil at 60 °C (140 °F), then tempered at 175 °C (350 °F) for 1 1 2...
Abstract
The gear of a spiral bevel gear set broke into three pieces after about two years of service. The gear (made of 4817 steel) broke along the root of a tooth intersected by three of the six 22-mm diam holes used to mount the gear to a hub. Fatigue progression for about 6.4 mm at the acute-angle intersections of three mounting holes with the root fillets of three teeth was revealed by examination of gear. Cracks at the intersections of the remaining three mounting holes and the adjacent tooth-root fillets were revealed by magnetic-particle inspection. Through hardening at the acute-angle intersections of the mounting holes and tooth-root fillets was revealed by metallographic examination. Design of the gear and placement of the mounting holes, which resulted in through hardening, were concluded to be the contributing factors to the fatigue failure of the gear.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048257
EISBN: 978-1-62708-217-4
... of AMS 6263 steel and was gas carburized to produce a case 0.4 to 0.6 mm (0.015 to 0.025 in.) deep. Investigation Sections of the gear were removed and examined for hardness, case depth, and microstructure of case and core. The results of the examination and the specified requirements were...
Abstract
Evidence of destructive pitting on the gear teeth (AMS 6263 steel) in the area of the pitchline was exhibited by an idler gear for the generator drive of an aircraft engine following test-stand engine testing. The case hardness was investigated to be lower than specified and it was suggested that it had resulted from surface defects. A decarburized surface layer and subsurface oxidation in the vicinity of pitting were revealed by metallographic examination of the 2% nital etched gear tooth sample. It was concluded that pitting had resulted as a combination of both the defects. The causes for the defects were reported based on previous investigation of heat treatment facilities. Oxide layer was caused by inadequate purging of air before carburization while decarburization was attributed to defects in the copper plating applied to the gear for its protection during austenitizing in an exothermic atmosphere. It was recommended that steps be taken during heat treatment to ensure neither of the two occurred.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
... widely used gear materials. Consequently, steel gears receive primary consideration in this article. Among the through-hardening steels in wide use are 1040, 1060, 4140, and 4340. These steels can also be effectively case hardened by induction heating. Among the carburizing steels used in gears...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses the loading conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach to the failure examination.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... by gas carburizing, but several studies have documented bending fatigue crack initiation by IG fracture even in the absence of surface oxidation ( Ref 16 ). It may also be facilitated by the rather large prior austenite grain size resulting from the carburizing cycle. Not only do the fatigue cracks...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... with the combined presence of segregated phosphorus and cementite at prior-austenite grain boundaries. The IG cracking may be associated with other microstructural features, such as the surface oxides generated by gas carburizing, but several studies have documented bending fatigue crack initiation by IG fracture...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... may be the result of segregation, or it may be the result of processing, as in a carburized part. Such inhomogeneities may produce a variation in transformation temperature at locations that are geometrically equivalent and that cool at the same rate. Nonuniform transformational stresses that result...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... if a nonuniform composition exists; this nonuniformity may be the result of segregation, or it may be the result of processing, as in a carburized part. Such inhomogeneities may produce a variation in transformation temperature at locations that are geometrically equivalent and that cool at the same rate...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... agitation causes temperature gradients within workload and part May not be uniform Rolling on surface is poor guide to agitation Must be measured or modeled Type of quenchant Brine, water, oil, polymer, gas, air Quench rate must be fast enough to achieve desired properties...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... keyways, and grooves. One illustration of this problem is hardening of a shaft over a lubrication cross hole, as illustrated in Fig. 28 ( Ref 22 ). Preferred alternative designs are also shown in Fig. 28 . If a radial cross hole is mandatory, the use of carburized steel with oil quenching would...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046252
EISBN: 978-1-62708-229-7
... on the inner surfaces. Carburization appeared to have been caused by a buildup of carbon, which was deposited during service through breakdown of an oil contaminant in the nitrogen gas. This condition was observed in all of the piping. The microstructure was normal for annealed type 347 stainless steel...
Abstract
A type 321 stainless steel bellows expansion joint on a 17-cm (6 in.) OD inlet line (347 stainless) in a gas-turbine test facility cracked during operation. The line carried high-purity nitrogen gas at 1034 kPa (150 psi) with a flow rate of 5.4 to 8.2 kg/s (12 to 18 lb/s). Cracking occurred in welded joints and in unwelded portions of the bellows. The bellows were made by forming the convolution halves from stainless steel sheet, then welding the convolutions together. Evidence from visual examination, liquid penetrant inspection chemical analysis, hardness tests, and metallographic examination of sections etched with Vilella's reagent supports the conclusions that failure of the bellows occurred by intergranular fatigue cracking. Secondary degrading effects on the piping existed as well. Recommendations included the acceptability of Type 321 stainless steel (provided open-cycle testing does not result in surface oxidation and crevices) Although type 347 stainless steel would be better, and Inconel 600 would be an even better choice. Welds would also need modified processing for reheating and annealing. Prevention of oil leakage into the system would minimize carburization of the piping and bellows.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001207
EISBN: 978-1-62708-235-8
... by the presence of ledeburite. Here also the basic microstructure consists of pearlite. Accordingly, the weldseam has carburized to over 2% C in places with consequent hardening. Even though it is of no significance for the present problem, let it be mentioned in passing that the weldseam is permeated with gas...
Abstract
Pipes made of low-carbon Thomas steel had been welded longitudinally employing the carbon-arc process with bare electrode wire made for argon-shielded arc welding. Difficulties were encountered during the cutting of threads because of the presence of hard spots. Microstructural examination showed welding conditions were such that a carburizing atmosphere developed, which led to an increase in carbon content and hardening at certain locations such as terminal bells and lap joints. This explained the processing difficulties during the threading operation.
1