Skip Nav Destination
Close Modal
Search Results for
Front-end loaders
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8 Search Results for
Front-end loaders
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0045987
EISBN: 978-1-62708-221-1
... Abstract A support arm on a front-end loader failed in a brittle manner while lifting a load. The arm had a cross section of 50 x 200 mm (2 x 8 in.). Material used for the arm was hot-rolled ASTM A572, grade 42 (type 1), steel, which exhibited poor impact properties in the as-rolled condition...
Abstract
A support arm on a front-end loader failed in a brittle manner while lifting a load. The arm had a cross section of 50 x 200 mm (2 x 8 in.). Material used for the arm was hot-rolled ASTM A572, grade 42 (type 1), steel, which exhibited poor impact properties in the as-rolled condition and had a ductile-to-brittle transition temperature exceeding 93 deg C (200 deg F). This transition temperature was much too high for the application. It was recommended that a modified ASTM A572, grade 42 (0.15% C max), type 1 or 2, steel be used (type 1, which contains niobium, may be needed to meet strength requirements). The steel should be specified to be killed, fine-grained, and normalized, with Charpy V-notch impact-energy values of 20 J (15 ft·lbf) at -46 deg C (-50 deg F) in the longitudinal direction and 20 J (15 ft·lbf) at -29 deg C (-20 deg F) in the transverse direction.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001635
EISBN: 978-1-62708-221-1
... Abstract A hoist lift hose on a loader failed catastrophically. The hoses were a 100R13 type (as classified in AS3791-1991) with 50.8 mm nominal internal diameter. They consisted of six alternating spirals of heavy wire around a synthetic rubber inner tube with a synthetic rubber outer sheath...
Abstract
A hoist lift hose on a loader failed catastrophically. The hoses were a 100R13 type (as classified in AS3791-1991) with 50.8 mm nominal internal diameter. They consisted of six alternating spirals of heavy wire around a synthetic rubber inner tube with a synthetic rubber outer sheath. Failure of the lift hose was approximately 50 to 100 mm away from the "upper" end of the hose, with the straight coupling that attaches to the hydraulic system. The return hose was in much better condition, with no apparent deformation and only small areas of mechanical damage to the outer sheath. There were two modes of failure of the wire: tensile and corrosion related. The predominant corrosion mechanism appeared to be crevice corrosion related, with the corrosion being driven by the retention of water by the cover material around the wire strands. In this case study (and in most wire-reinforced hydraulic hoses), the wire reinforcing strands were a medium-carbon steel in the cold drawn condition. Radiographic nondestructive testing (NDT) was recommended to determine when a hydraulic hose should be replaced.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046205
EISBN: 978-1-62708-225-9
... Abstract The splined shaft (1040 steel, heat treated to a hardness of 44 to 46 HRC and a tensile strength of approximately 1448 MPa, or 210 ksi) from a front-end loader used in a salt-handling area broke after being in service approximately two weeks while operating at temperatures near -18 deg...
Abstract
The splined shaft (1040 steel, heat treated to a hardness of 44 to 46 HRC and a tensile strength of approximately 1448 MPa, or 210 ksi) from a front-end loader used in a salt-handling area broke after being in service approximately two weeks while operating at temperatures near -18 deg C (0 deg F). During the summer, similar shafts had a service life of 5 to eight months. Examination of the fracture surface showed brittle fatigue cracks, and visual examination of the splines disclosed heavy chatter marks at the root of the spline, with burrs and tears at the fillet area. Evidence found supports the conclusion that the shaft failed as the result of stress in the sharp fillets and rough surfaces at the root of the splines. Cold weather failure occurred sooner than in hot weather because ductile-to-brittle transition temperature of the 1040 steel shaft was too high. Recommendations include redesign of the fillet radius to a minimum of 1.6 mm (0.06 in.) and a maximum surface finish in the spline area of 0.8 microns. Material for the shafts should be modified to a nickel alloy steel, heat treated to a hardness of 28 to 32 HRC before machining.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001501
EISBN: 978-1-62708-221-1
... Abstract A spiral bevel gear and pinion set that showed "excessive wear on the pinion teeth" was submitted for analysis. This gear set was the primary drive unit for the differential and axle shafts of an exceptionally-large front-end loader in the experimental stages of development...
Abstract
A spiral bevel gear and pinion set that showed "excessive wear on the pinion teeth" was submitted for analysis. This gear set was the primary drive unit for the differential and axle shafts of an exceptionally-large front-end loader in the experimental stages of development. There was no evidence of tooth bending fatigue on either part. Several cracks were associated with the spalling surfaces on the concave sides of the 4820H NiMo alloy steel pinion teeth. The gear teeth showed no indication of fatigue. The primary mode of failure was rolling contact fatigue of the concave (drive) active tooth profile. The spalled area was a consequence of this action. The pitting low on the profile appeared to have originated after the shift of the pinion tooth away from the gear center. The shift of the pinion was most often due to a bearing displacement or malfunction. The cause of this failure was continuous high overload that may also have contributed to the bearing displacement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047508
EISBN: 978-1-62708-221-1
... Abstract A riveted 0.25% carbon steel oil-storage tank in Oklahoma was dismantled and reassembled in Minnesota by welding to form a storage tank for soybean oil. An opening was cut in the side of the tank to admit a front-end loader. A frame of heavy angle iron was welded to the tank...
Abstract
A riveted 0.25% carbon steel oil-storage tank in Oklahoma was dismantled and reassembled in Minnesota by welding to form a storage tank for soybean oil. An opening was cut in the side of the tank to admit a front-end loader. A frame of heavy angle iron was welded to the tank and drilled for bolting on a heavy steel plate. The tank was filled to a record height. In mid-Jan the temperature dropped to -31 deg C (-23 deg F), with high winds. The tank split open and collapsed. The welding used the shielded metal arc process with E6010 electrodes, which could lead to weld porosity, hydrogen embrittlement, or both. At subzero temperatures, the steel was below its ductile-to-brittle transition temperature. These circumstances suggest a brittle condition. Steps to avoid this type of failure: For cold conditions, the steel plate should have a low carbon content and a high manganese-to-sulfur ratio and be in a normalized condition, low-hydrogen electrodes and welding practices should be used, all corners should be generously radiused, the welds should be inspected and ground or dressed to minimize stress concentrations, postweld heating is advisable, and radiographic and penetrant inspection tests should be performed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001497
EISBN: 978-1-62708-221-1
... Abstract A spiral bevel gear set in the differential housing of a large front-end loader moving coal in a storage area failed in service. The machine had operated approximately 1500 h. Although the failure involved only the pinion teeth, magnetic particle inspection was performed on each part...
Abstract
A spiral bevel gear set in the differential housing of a large front-end loader moving coal in a storage area failed in service. The machine had operated approximately 1500 h. Although the failure involved only the pinion teeth, magnetic particle inspection was performed on each part. The 4817 NiMo alloy steel pinion showed no indication of additional cracking, nor did the 4820 NiMo alloy steel gear. The mode of failure was tooth bending fatigue with the origin at the designed position: root radius at midsection of tooth. The load was well centered, and progression occurred for a long period of time. The cause of failure was a suddenly applied peak overload, which initiated a crack at the root radius. Progression continued by relatively low overstress from the crack, which was now a stress-concentration point. This was a classic tooth bending fatigue failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
... between parallel shafts. In herringbone gears, tooth engagement is progressive, and two or more teeth share the load at all times. Because they have right-hand and left-hand helixes, herringbone gears are usually not subject to end thrust. Fig. 3 Illustration of herringbone and helical gears...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses the loading conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach to the failure examination.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
.... In the injection molding process, a weld line (also called a knit line) is formed when separate melt fronts traveling in opposite directions meet. The polymer molecules and the fiber reinforcement will orient themselves along the weld line plane, perpendicular to the flow direction. Such adverse orientation...
Abstract
This article focuses on manufacturing-related failures of injection-molded plastic parts, although the concepts apply to all plastic manufacturing processes It provides detailed examples of failures due to improper material handling, drying, mixing of additives, and molecular packing and orientation. It also presents examples of failures stemming from material degradation improper use of metal inserts, weak weld lines, insufficient curing of thermosets, and inadequate mixing and impregnation in the case of thermoset composites.