1-20 of 102 Search Results for

Filler metals

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048767
EISBN: 978-1-62708-235-8
... were revealed at the edges of the weld metal. It was revealed by chemical analysis of this band that a stainless steel filler metal had been used which produced mixed composition at the weld boundaries. The plating material was revealed to be nickel by chemical analysis. It was concluded that clapper...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048095
EISBN: 978-1-62708-224-2
... Abstract The T-section cross member of the lifting sling failed in service while lifting a 966 kg (2130 lb) load. The L-section sling body and the cross member were made of aluminum alloy 5083 or 5086 and were joined by welding using aluminum alloy 4043 filler metal. The fracture was found...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047745
EISBN: 978-1-62708-235-8
... that the filler metal had not covered all mating surfaces. Lack of a metallurgical bond between the brazing alloy and stainless steel and instead mechanical bonding of the filler metal to an oxide layer on the stainless steel surface was revealed by examination of the broken joint at the cup. It was indicated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047566
EISBN: 978-1-62708-235-8
... stainless steel filler metal to form a fillet between the handle and the cover. The structure was found to contain a zone of brittle martensite in the portion of the weld adjacent to the low-carbon steel handle; fracture had occurred in this zone. The brittle martensite layer in the weld was the result...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001411
EISBN: 978-1-62708-234-1
... Abstract A welded joint between lengths of 4 in. OD x 13 SWG copper pipe which formed part of a cold-water main failed by cracking over one-third of the circumference. Microscopic examination of the filler metal showed that it had a structure corresponding to a brass of the 60:40 type commonly...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048808
EISBN: 978-1-62708-228-0
... Abstract The welds joining the liner and shell of a fluid catalytic cracking unit failed. The shell was made of ASTM A515 carbon steel welded with E7018 filler metal. The liner was made of type 405 stainless steel and was plug welded to the shell using ER309 and ER310 stainless steel filler...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001358
EISBN: 978-1-62708-215-0
... Abstract Several compressor diaphragms from five gas turbines cracked after a short time in service. The vanes were constructed of type 403 stainless steel, and welding was performed using type 309L austenitic stainless steel filler metal. The fractures originated in the weld heat-affected...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047753
EISBN: 978-1-62708-235-8
... Abstract A pressure probe assembly comprised of type 347 stainless steel housing, brazed with AMS 4772D filler metal to the pressure probe, failed due to detachment of a rectangular segment from the housing. The presence of a large brazing metal devoid region in the pressure probe-housing joint...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047756
EISBN: 978-1-62708-235-8
... Abstract Waspaloy (AMS 5586) fabricated inner ring of a spray-manifold assembly failed transversely through the manifold tubing at the edge of the tube and support sleeve brazed joint. The assembly was brazed with AWS BAu-4 filler metal (AMS 4787). Fatigue beach marks propagating from...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091048
EISBN: 978-1-62708-235-8
... Abstract A welded ferritic stainless steel heat exchanger cracked prior to service. The welding filler metal was identified as an austenitic stainless steel and the joining method as gas tungsten arc welding. Investigation (visual inspection, SEM images, 5.9x images, and 8.9x/119x images etched...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047879
EISBN: 978-1-62708-234-1
..., grade 2 steel, and the larger-diam section was covered with a type 316 stainless steel end cap. The cap was welded to each end using type ER316 stainless steel filler metal. The forged steel shaft was revealed to have fractured at approximately 90 deg to the shaft axis in the weld metal...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... metal arc welding; neither preheating nor postheating was specified. The filler metal was E70S-6 continuous consumable wire with a copper coating to protect it from atmospheric oxidation while on the reel. Analysis of the two castings revealed that the carbon content was higher than specified, ranging...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001280
EISBN: 978-1-62708-215-0
... by internal carburization. Quality control of welding procedures and filler metal was recommended. Chemical processing equipment Chemical processing industry Chemical reactors Crack propagation Furnaces Heat-resistant steels Tubing Weld defects Welded joints HK-40 UNS J94204 Joining-related...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
... Abstract A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0091622
EISBN: 978-1-62708-230-3
... at the top end of the range. The plate was standard 317L material. The filler metal was type 316, although marginal in molybdenum content. Investigation (visual inspection, chemical analysis, micrographs, and metallographic examination) supported the conclusion that the damage to the neck liner was due to Cl...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047545
EISBN: 978-1-62708-236-5
... reflectors, indicating the presence of slag inclusions and porosity. A low-carbon steel flux-cored filler metal was used in repair welding the crankshaft, without any preweld or postweld heating. This resulted in the formation of martensite in the HAZ. The repair weld failed by brittle fracture, which...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001829
EISBN: 978-1-62708-241-9
...Chemical compositions of bond-coat layer, base, and filler metal Table 1 Chemical compositions of bond-coat layer, base, and filler metal Chemical Composition, wt.% Co Cr Ni W Ta C Zr Fe Ti Al Base metal ECY768 54.32 23.64 10.17 6.83 3.70 0.61 0.03 0.35 0.25...
Image
Published: 01 January 2002
Fig. 43 Incomplete fusion in a pulsed gas metal arc spot weld involving ERNiCu-7 (Monel 60), 0.89 mm (0.035 in.) diameter filler metal, copper-nickel to steel weldment. Etchant, 50% nitric-50% acetic acid. (a) View showing IF flaw. 30×. (b) View showing that IF was eliminated by tapering More
Image
Published: 01 January 2002
Fig. 20 Section through an automatic gas tungsten arc weld containing voids caused by incomplete fusion. (a) Base metal at left is Incoloy 800 nickel alloy, that at right is 2.25Cr-1.0Mo alloy steel. Filler metal was ERNiCr-3, used with cold wire feed. Macrograph. 1×. (b) Micrograph More