1-20 of 175 Search Results for

Ferritic stainless steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
... intergranular corrosion a couple of grains deep as a result of sensitization ( Fig. 3 ). Fig. 1 Top view of a longitudinal weld in 6.4 mm (0.25 in.) E-Brite ferritic stainless steel plate showing intergranular corrosion. The weld was made with matching filler metal. About 4× Fig. 2...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
... Abstract Alloy 430 stainless steel tube-to-header welds failed in a heat recovery steam generator (HRSG) within one year of commissioning. The HRSG was in a combined cycle, gas-fired, combustion turbine electric power plant. Alloy 430, a 17% Cr ferritic stainless steel, was selected because...
Image
Published: 01 January 2002
Fig. 35 Cracking of a welded ferritic stainless steel heat exchanger ( example 15 ). (a) Diagram showing the heat-exchanger weld joint design. (b) The transverse crack that occurred through the weld. 5.9×. (c) Metallographic profile of the weld near the cracking, showing melt-through, grain More
Image
Published: 01 January 2002
Fig. 35 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. 200× More
Image
Published: 01 June 2019
Fig. 2 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. 200× More
Image
Published: 15 January 2021
Fig. 38 Cracking of a welded ferritic stainless steel heat exchanger (Example 22). (a) Diagram showing the heat-exchanger weld joint design. GTAW, gas tungsten arc weld. (b) Transverse crack that occurred through the weld. Original magnification: 5.9×. (c) Metallographic profile of the weld More
Image
Published: 15 January 2021
Fig. 35 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. Original magnification: 200× More
Image
Published: 01 June 2019
Fig. 1 Cracking of a welded ferritic stainless steel heat exchanger. (a) Diagram showing the heat-exchanger weld joint design. (b) The transverse crack that occurred through the weld. 5.9×. (c) Metallographic profile of the weld near the cracking, showing melt-through, grain growth More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091048
EISBN: 978-1-62708-235-8
... Abstract A welded ferritic stainless steel heat exchanger cracked prior to service. The welding filler metal was identified as an austenitic stainless steel and the joining method as gas tungsten arc welding. Investigation (visual inspection, SEM images, 5.9x images, and 8.9x/119x images etched...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0065826
EISBN: 978-1-62708-233-4
... a week by transgranular SCC. Annealed type 430 ferritic stainless steel was subsequently suggested to prevent further failures. Basic oxygen furnaces Materials selection Precipitator wires 304 UNS S30400 430 UNS 54300 1008 UNS G10080 Corrosion fatigue Stress-corrosion cracking...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001566
EISBN: 978-1-62708-229-7
... C3/C4, or ferritic stainless steel alloy per ASTM 182, Grade FXM27. Boilers Chlorides Diffuser nozzles Thermal stresses CF-8 Stress-corrosion cracking The desuperheater diffuser nozzle in the steam supply line failed within 9 months of service in a 8.25 MN/m 2 (1200 psig) steam line...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001412
EISBN: 978-1-62708-229-7
.... Non-metallic inclusions in the blade material playing a minor part. Cracking (fracturing) Loads (forces) Nonmetallic inclusions Stresses Turbine blades Vibration Ferritic stainless steel (Other, general, or unspecified) fracture The failure described occurred in a 45,000 kW, 3,000...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001074
EISBN: 978-1-62708-214-3
... Abstract A cast housing, part of a multi-shaft yoking mechanism, failed during assembly and installation of the equipment in which it was to be used. The housing, or yoke body, was cast from AISI 420 grade ferritic stainless steel. Analysis revealed that the failure was caused by the presence...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... the chemical composition of the broken spindle, and its associated components.The stud, spacers, and washers were made from alloy AISI 430F (UNS S43020) free-machining stainless steel. Alloy 430F is a non heat-treatable ferritic stainless steel sulphurized to increase machinability. Except in thin sections...
Image
Published: 01 June 2019
Fig. 1 Precipitator wires from a basic oxygen furnace. (a) Original AISI 1008 carbon steel wire, wrapped around an insulator spool and fastened with a ferrule made from type 430 ferritic stainless steel. One ferrule has been removed. (b) Close-up view showing the fractured wire face inside More
Image
Published: 01 January 2002
Fig. 34 Top view of a longitudinal weld in 6.4 mm (0.25 in.) E-Brite ferritic stainless steel plate showing intergranular corrosion. The weld was made with matching filler metal. About 4× More
Image
Published: 15 January 2021
Fig. 34 Top view of a longitudinal weld in 6.4 mm (0.25 in.) E-Brite ferritic stainless steel plate showing intergranular corrosion. The weld was made with matching filler metal. Original magnification: ~4× More
Image
Published: 01 June 2019
Fig. 1 Top view of a longitudinal weld in 6.4 mm (0.25 in.) E-Brite ferritic stainless steel plate showing intergranular corrosion. The weld was made with matching filler metal. About 4× More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001324
EISBN: 978-1-62708-215-0
... by grinding, polishing, and etching. The prepared sections were examined using a metallurgical microscope to assess microstructure and internal and external surface conditions. Figure 4 shows the microstructure of the base metal, which was typical of an annealed ferritic stainless steel. Figure 5 shows...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... mentioned as a possible option to replace more traditional stainless steels. A NACE/ISO standard describes the requirements for such applications [ 1 ]. DSSs have a two-phase microstructure (austenite and ferrite) and have some advantages, mainly higher strength, higher resistance to intergranular corrosion...