Skip Nav Destination
Close Modal
Search Results for
Fe-0.5C-1.3Mn-1.1Cr
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1 Search Results for
Fe-0.5C-1.3Mn-1.1Cr
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001170
EISBN: 978-1-62708-225-9
... intergranular fissures and therefore it can be established that stress corrosion accelerated cracking of the ring Although since the drum was used for the processing of various liquids, the exact corroding medium cannot be stated. Centrifuges Lock rings Fe-0.5C-1.3Mn-1.1Cr Pitting corrosion...
Abstract
The lock ring of a centrifuge drum was fractured after one year's operation. The ring, with a trapezoidal thread on the inside, was made of steel with approximately 0.5%C-1.3%Mn-1.1%Cr and was hardened and tempered to 105 kp/sq mm strength at 11% elongation (d10). It fractured radially in one of four places in which the cross section was weakened by short grooves that served as tool grips for tightening the cover. The fracture propagated from the base of the thread and followed it in a circumferential direction until it was broken through radially at the top across the ring due to a weakening caused by the external reduction of the cross section. The uppermost turn was corroded at the base by pitting favored by differences in ventilation and formation of Evans elements in the narrow gap between thread and counterthread. Metallographic examination showed that the pitting favored intergranular fissures and therefore it can be established that stress corrosion accelerated cracking of the ring Although since the drum was used for the processing of various liquids, the exact corroding medium cannot be stated.