Skip Nav Destination
Close Modal
Search Results for
Fe-0.45C-1.0Cr
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1 Search Results for
Fe-0.45C-1.0Cr
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001178
EISBN: 978-1-62708-235-8
... be verified analytically because most of it escapes again after prolonged storage at room temperature or short heating at 100 to 200 deg C. Cracking (fracturing) Galvanized steels Screws Fe-0.45C-1.0Cr Hydrogen damage and embrittlement Eight 7 16 ″ cylinderhead screws which had...
Abstract
Eight cylinderhead screws cracked after a short running time in motors. They were made of Fe-0.45C-1Cr steel, had rolled threads, were heat treated to 110 kg/sq mm tensile strength, and were electrolytically galvanized. All fractured at the root of the thread. The surfaces of fracture were fine-grained and had not spread by rubbing. Because the screws were electrolytically galvanized, failure resulted from “delayed fracture.” Experience has shown that this type of fracture is seen on production parts made of high-strength steels, which absorbed hydrogen during pickling or during a galvanic surface treatment. Such parts will rupture below the elastic limit during continuous stressing. This often occurs only after the expiration of a certain time period, and preferably at locations of stress concentrations such as changes in cross section or threads. As a rule, the hydrogen cannot be verified analytically because most of it escapes again after prolonged storage at room temperature or short heating at 100 to 200 deg C.