Skip Nav Destination
Close Modal
By
Phillip Green
By
Durgam G. Chakrapani
By
Daryl C. Collins
By
D.K. Bhattacharya, S.K. Ray, Placid Rodriguez
By
W. M. Williams, Mark Firth
By
Harold J. Snyder, Casey B. Snyder
By
R.J.H. Wanhill
By
Anthony A. Tipton
Search Results for
Fatigue loading
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 614
Search Results for Fatigue loading
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fatigue Failure of a Carbon Steel Piston Shaft on an Extrusion Press Billet-Loading Tray
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001287
EISBN: 978-1-62708-215-0
... treatment be used. The provision of a stop to reduce bending stresses was also recommended. Extruders Shafts (power) UNS G10220 1022 EN3 Fatigue fracture Background A piston shaft on the billet-loading tray of an extrusion press experienced recurring failure. The shaft, which...
Abstract
A recurring piston shaft failure problem on the billet-loading tray of an extrusion press was investigated. Two shafts fractured within a period of 10 days. The shaft was machined from normalized EN3 (AISI C1022) steel stock without further treatment. Visual, microstructural, chemical, and mechanical (hardness and tensile properties) analyses of failed shaft specimens were conducted. The examinations showed that the shafts had failed by fatigue. It was recommended that a low-alloy steel (e.g., 3% Ni-Cr) in the hardened and tempered condition and subjected to shot-peening surface-hardening treatment be used. The provision of a stop to reduce bending stresses was also recommended.
Book Chapter
Fatigue Cracking of Welded Structures Under Dynamic Loading
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001424
EISBN: 978-1-62708-233-4
... and experiment with fabricated structures. Another feature favourable to the casting is the higher intrinsic damping, capacity of the material. Fabricated structures that are subjected to dynamic loading conditions in service are particularly liable to develop fatigue cracks where stresses are high...
Abstract
Two examples concerning fabricated mild steel rotor spiders which failed due to lack of torsional rigidity, probably supplemented by the presence of high internal stress, are described. The machine concerned in the first case was a 3,000 hp three-phase slip-ring motor. In the second case the machine was a 200 kW alternator, direct-driven by a diesel engine running at 750 rpm. Both the foregoing failures reveal the same basic weakness, i.e., insufficient rigidity when subjected to variations or reversals of torque. In the first case, the bars welded to the arms were inadequately supported in a lateral direction, so that excessive stresses of a fluctuating nature were set up in the welds as a result of the frequent load changes that arose in service. This weakness was eliminated when designing the replacement spider. In the second example, failure also arose as a result of deficient torsional rigidity with the consequent development of excessive stresses in the welds at the junctions of the bars with the sleeve, the torque being of a fluctuating character due to the impulses imparted by the engine.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091096
EISBN: 978-1-62708-234-1
... the conclusion that the basic failure mechanism was fracture by torsional fatigue, which started at numerous surface shear cracks, both longitudinal and transverse, that developed in the periphery of the root of the shear groove. These shear cracks resulted from high peak loads caused by chatter. The shear...
Abstract
A 4340 steel shaft, the driving member of a large rotor subject to cyclic loading and frequent overloads, broke after three weeks of operation. The driving shaft contained a shear groove at which the shaft should break if a sudden high overload occurred, thus preventing damage to an expensive gear mechanism. The rotor was subjected to severe chatter, which was an abnormal condition resulting from a series of continuous small overloads occurring at a frequency of around three per second. Investigation (visual inspection, hardness testing, and hot acid etch images) supported the conclusion that the basic failure mechanism was fracture by torsional fatigue, which started at numerous surface shear cracks, both longitudinal and transverse, that developed in the periphery of the root of the shear groove. These shear cracks resulted from high peak loads caused by chatter. The shear groove in the shaft had performed its function, but at a lower overload level than intended. Recommendations included increasing the fatigue strength of the shaft by shot peening the shear groove to minimize chatter.
Book Chapter
Fatigue Failure of a Steel Wire Rope Resulting From Shock Loading
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048026
EISBN: 978-1-62708-224-2
... to 33 cm and pitched roll plates were installed between the tanks where rolling of coils was required. Cranes Vibration Steel wire rope Fatigue fracture The wire rope on a cleaning-line crane broke while lifting a normal load of coils. This rope, which was specified for the application...
Abstract
The 11 mm diam 8 x 19 fiber-core rope, constructed from improved plow steel wire, on the cleaning-line crane failed while lifting a normal load of coils after five weeks of service. Several broken wires and fraying of the fiber core were revealed by visual examination of a section of the wire rope adjacent to the fracture. Fatigue cracks originating from both sides of the wire were revealed by microscopic examination of a longitudinal section of a wire. The diam of the sheave on the bale (27 cm) was found to be slightly below that specified for the 11 mm diam rope. It was observed that the sudden shock received by the hook in rolling the coils over the edge of the rinse tank after pickling caused vibration which was most severe at the clamped end of the rope. It was concluded that this caused the fatigue failure of the rope. As a corrective measure, the diam of the sheave was increased to 33 cm and pitched roll plates were installed between the tanks where rolling of coils was required.
Image
Basic definitions of a cycle required to characterize fatigue loading. Adap...
Available to PurchasePublished: 30 August 2021
Fig. 2 Basic definitions of a cycle required to characterize fatigue loading. Adapted from Ref 4
More
Image
Examples of variable-amplitude fatigue loading. (a) Single high-cycle super...
Available to PurchasePublished: 30 August 2021
Fig. 3 Examples of variable-amplitude fatigue loading. (a) Single high-cycle superimposed loading. (b) Multiple high-cycle superimposed loading. (c) Variable multiple high-cycle superimposed loading. Adapted from Ref 3
More
Image
Fatigue striations from random loading on fracture surface of failed spar. ...
Available to Purchase
in Analysis of a Helicopter Blade Fatigue Fracture by Digital Fractographic Imaging Analysis
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 3 Fatigue striations from random loading on fracture surface of failed spar. (638× approx.).
More
Book Chapter
Fatigue Fracture of Aluminum Wires in High-Voltage Electrical Cables in Alaska
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001124
EISBN: 978-1-62708-214-3
... established that the fractures were caused by fatigue loading attributable to wind/thermal factors at the joints. The grain flow at the joints was transverse to the wire axis, rendering the notches of the joints sensitive to fatigue loading. An additional contributory factor was intergranular corrosion, which...
Abstract
Several wires in aluminum conductor cables fractured within 5 to 8 years of, service in Alaskan tundra. The cables were comprised of 19-wire strands; the wires were aluminum alloy 6201-T81. Visual and metallographic examinations of the cold-upset pressure weld joints in the wires established that the fractures were caused by fatigue loading attributable to wind/thermal factors at the joints. The grain flow at the joints was transverse to the wire axis, rendering the notches of the joints sensitive to fatigue loading. An additional contributory factor was intergranular corrosion, which assisted fatigue crack initiation/propagation. The failure was attributed to the departure of conductor quality from the requirements of ASTM B 398 and B 399, which specify that “no joints shall be made during final drawing or in the finished wire” and that the joints should not be closer than 15 m (50 ft). The failed cable did not meet either criterion. It was recommended that the replacement cable be inspected for strict compliance to ASTM requirements.
Book Chapter
Corrosion Fatigue Failure of Stainless Steel Load Cells in a Milk Storage Tank
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001386
EISBN: 978-1-62708-215-0
... fracture that was preceded by a small fatigue region. Pitting corrosion was evident at the fracture origin. The areas around the load cells had been subjected to regular washdowns using high-pressure hot water, and the pitting was attributed to crevice corrosion between the load cell and the holddown bolts...
Abstract
Two type 420 martensitic stainless steel load cell bodies, which had been installed under two of the four legs of a milk storage tank failed in service. The failure occurred near a change in section and involved fracture of the entire cross section. Examination showed a brittle fracture that was preceded by a small fatigue region. Pitting corrosion was evident at the fracture origin. The areas around the load cells had been subjected to regular washdowns using high-pressure hot water, and the pitting was attributed to crevice corrosion between the load cell and the holddown bolts. Prevention of such corrosion by the use of a flexible sealant to eliminate the crevice was recommended.
Book Chapter
Fatigue Failure at Fillet-Welded Nozzle Joints in a Type 316L Stainless Steel Tank
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001350
EISBN: 978-1-62708-215-0
... examination showed ratchet marks at the edges of the fracture surface, indicating that loading was of the rotating bending type. Electron fractography using the two-stage replica method revealed striation marks characteristic of fatigue fracture. The striations indicated that the cracks had advanced on many...
Abstract
Upon arrival at the erection site, an AISI type 316L stainless steel tank intended for storage of fast breeder test reactor coolant (liquid sodium) exhibited cracks on its shell at two of four shell/nozzle fillet-welded joint regions. The tank had been transported from the manufacturer to the erection site by road, a distance of about 800 km (500 mi). During transport, the nozzles were kept at an angle of 45 deg to the vertical because of low clearance heights in road tunnels. The two damaged joints were unsupported at their ends inside the vessel, unlike the two uncracked nozzles. Surface examination showed ratchet marks at the edges of the fracture surface, indicating that loading was of the rotating bending type. Electron fractography using the two-stage replica method revealed striation marks characteristic of fatigue fracture. The striations indicated that the cracks had advanced on many “mini-fronts,” also indicative of nonuniform loading such as rotating bending. It was recommended that a support be added at the inside end of the nozzles to rigidly connect with the shell. In addition to avoiding transport problems, this design modification would reduce fatigue loading that occurs in service due to vibration of the nozzles during filling and draining of the tank.
Book Chapter
An Analysis of Six Fatigue Failures in Cranes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001549
EISBN: 978-1-62708-224-2
...-train components are often subject to severe fatigue loading and are perhaps even more prone to fatigue failure. In all instances, the presence of fatigue cracks at least contributed to the failure. In most instances, fatigue was the sole cause. Further, in each case, with regular inspection, fatigue...
Abstract
Crane collapse due to bolt fatigue and fatigue failure of a crane support column, crane tower, overhead yard crane, hoist rope, and overhead crane drive shaft are described. The first four examples relate to the structural integrity of cranes. However, equipment such as drive and hoist-train components are often subject to severe fatigue loading and are perhaps even more prone to fatigue failure. In all instances, the presence of fatigue cracks at least contributed to the failure. In most instances, fatigue was the sole cause. Further, in each case, with regular inspection, fatigue cracks probably would have been detected well before final failure.
Book Chapter
Fatigue Fracture of 316L Stainless Steel Screws Employed for Surgical Implanting
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
... loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended. Biomedical material 316L UNS S31603 Pitting corrosion Fatigue fracture Background Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant...
Abstract
Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant. The screws had been used to fasten a seven-hole narrow dynamic compression plate to a patient's spine. The broken screws and screws of the same vintage and source were examined using macrofractography, SEM fractography, and hardness testing. Fractography established that fracture was by fatigue and that the fatigue cracking originated at corrosion pits. Hardness while below specification, still indicated that the screws were in the cold-worked condition and notch sensitive during fatigue loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended.
Book Chapter
Material-Based Failure Analysis of a Helicopter Rotor Hub
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001636
EISBN: 978-1-62708-217-4
... history could have been more severe than anticipated. This possibility was subsequently supported by a separate investigation of the assumed and actual fatigue loads and stresses. Rotor blade Ti-6Al-4V UNS R56406 Fatigue fracture Introduction On 10 November 1998, a Royal Netherlands Navy...
Abstract
A Lynx helicopter from the Royal Netherlands Navy lost a rotor blade during preparation for take-off. The blade loss was due to failure of a rotor hub arm by fatigue. The arm was integral to the titanium alloy rotor hub. An extensive material based failure analysis covered the hub manufacture, service damage, and estimates of service stresses. There was no evidence for failure due to poor material properties. However, fractographic and fracture mechanics analyses of the service failure, a full scale test failure, and specimen test failures indicated that the service fatigue stress history could have been more severe than anticipated. This possibility was subsequently supported by a separate investigation of the assumed and actual fatigue loads and stresses.
Book Chapter
Fatigue Failure of an Aluminum Turbine Impeller
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001366
EISBN: 978-1-62708-215-0
... analysis indicated that the fatigue loading probably had been caused by forced excitation, resulting in the impeller vibrating at its resonant frequency. It was recommended that the impeller design, control systems, and material of construction be changed. Airfoils Turbines Vanes 7075-T6 AMS 4126...
Abstract
An AMS 4126 (7075-T6) aluminum alloy impeller from a radial inflow turbine fractured during commissioning. Initial examination showed that two adjacent vanes had fractured through airfoils in the vicinity of the vane leading edges, and one vane fractured through an airfoil near the hub in the vicinity of the vane trailing edge. Some remaining vanes exhibited radial and transverse cracks in similar locations. Binocular and scanning electron microscope examinations showed that the cracks had been caused by high-cycle fatigue and had progressed from multiple origins on the vane surface. Structural analysis indicated that the fatigue loading probably had been caused by forced excitation, resulting in the impeller vibrating at its resonant frequency. It was recommended that the impeller design, control systems, and material of construction be changed.
Book Chapter
Failure of an Automobile Transmission Stick-Shift
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0048535
EISBN: 978-1-62708-218-1
.... As the crack progressed, the service load shifted to the section marked L. This overload on location L appears to have caused another fatigue crack that propagated first over the smooth-banded region. Catastrophic failure occurred when the component became unstable under the applied load. Fatigue loading...
Abstract
A stick-shift from an automobile transmission failed in service. Failure occurred by stable fatigue crack propagation at locations R and L. Plausibly, the crack initiated at location R due to maximum tensile stress, which was perhaps further concentrated by a surface imperfection. As the crack progressed, the service load shifted to the section marked L. This overload on location L appears to have caused another fatigue crack that propagated first over the smooth-banded region. Catastrophic failure occurred when the component became unstable under the applied load.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047968
EISBN: 978-1-62708-225-9
... when the bearing was not rotating or during installation. It was concluded that the bearings had failed in rolling-contact fatigue. The noise was eliminated and the preload was reduced to 30 lb by using a different spring washer as a corrective measure. Computers Loads (forces) Noise Service...
Abstract
The radial-contact ball bearings (type 440C stainless steel and hardened) supporting a computer microdrum were removed for examination as they became noisy. Two sizes of bearings were used for the microdrum and a spring washer that applied a 50 lb axial load on the smaller bearing was installed in contact with the inner ring for accurate positioning of the microdrum. The particles contained in residue achieved after cleaning of the grease on bearings with a petroleum solvent were attracted by a magnet and detected under a SEM (SEM) to be flaked off particles from the outer raceway surface. Smearing, true-brinelling marks, and evidence of flaking caused by the shifting of the contact area (toward one side) under axial load, was revealed by SEM investigation of one side of the outer-ring raceway. The true-brinelling marks on the raceways were found to be caused by excessive loading when the bearing was not rotating or during installation. It was concluded that the bearings had failed in rolling-contact fatigue. The noise was eliminated and the preload was reduced to 30 lb by using a different spring washer as a corrective measure.
Image
Liquid droplet erosion from a low-pressure steam turbine blade that failed ...
Available to PurchasePublished: 30 August 2021
Fig. 16 Liquid droplet erosion from a low-pressure steam turbine blade that failed under fatigue loading. (a) Photograph of leading-edge airfoil, suction side. The lower portion of the airfoil (left) was 400-series stainless steel alloy; the upper portion of the airfoil (right) was clad
More
Image
Fatigue crack appearance in an austenitic stainless steel specimen polished...
Available to PurchasePublished: 15 January 2021
Fig. 37 Fatigue crack appearance in an austenitic stainless steel specimen polished before fatigue loading, revealing slip lines on surfaces associated with crack formation and growth. Arrows indicate the direction of crack growth. Original magnification: 52×
More
Book Chapter
Fatigue Fracture of a Plunger Shaft That Initiated at a Sharp Fillet
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047100
EISBN: 978-1-62708-233-4
... the fractures were fatigue-induced failures due to sharp radii in the fillets. The stress-concentrating effects of the fillets caused fatigue cracks to initiate and grow under cyclic loading until the crack depth was critical, causing the shaft to fail and rendering the assembly inoperative. Recommendations...
Abstract
Plunger shafts machined from 4150 steel bar stock were involved in a series of fatigue failures. The fractures consistently occurred at two locations on the shafts: the shaft fillet and either side of a machined notch. The material specification for the shafts required 41xx series steel with a carbon content of 0.38 to 0.53%, a hardness of 35 to 40 HRC for the shaft, and a hardness of 50 to 55 HRC for the notch (which was case hardened). Analysis (visual inspection, chemical analysis, hardness testing, and magnetic particle inspection) supported the conclusions that all the fractures were fatigue-induced failures due to sharp radii in the fillets. The stress-concentrating effects of the fillets caused fatigue cracks to initiate and grow under cyclic loading until the crack depth was critical, causing the shaft to fail and rendering the assembly inoperative. Recommendations included increasing the radii of the notch and shaft fillets. If fatigue cracking had continued to be a problem with this component, shot peening of the subject radii would be appropriate. This process produces residual compressive stresses in the surface of the part, thereby retarding initiation of fatigue cracks.
Image
Portion of a fracture surface in a Ti-6Al-4V alloy. (a) Low magnification (...
Available to PurchasePublished: 01 January 2002
. Striated structure runs from 7 to 1 o'clock and is not due to fatigue loading but rather to second-phase beta needles as revealed by etching. Source: Ref 21
More
1