Skip Nav Destination
Close Modal
Search Results for
Fatigue limit
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 353 Search Results for
Fatigue limit
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Redesign of a Forged Manual Gear-Shift Lever Mechanism to Overcome Unacceptable Fatigue Failure of Original Forging
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 3 Effect of surface condition on fatigue limit. (a) Effect of surface condition on fatigue behavior of steels that were hardened and tempered to 269 to 285 HB. (b) Effect of tensile strength level and surface condition of steel on fatigue limit; strengths are given for 10 6 cycle fatigue
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047846
EISBN: 978-1-62708-218-1
... was removed in an effort to reduce cost and hence the shaft was subjected to increased vibration and shock loading. Insufficient fatigue limit of the shaft was revealed by fatigue testing of the shafts taken from stock in a rotating-beam machine. As a corrective measure, the fatigue limit of shafts...
Abstract
An 8640 steel shaft installed in a fuel-injection-pump governor that controlled the speed of a diesel engine used in trucks and tractors broke after few days of operation. The mechanism that drove the shaft was designed to include a slip clutch to protect the governor shaft from shock loading. It was revealed by visual examination that the fracture had initiated in the sharp corner at the bottom of a longitudinal hole which was part of a force feed lubricating system. Beach marks were observed on the fracture surfaces. It was revealed by further examination that the slip clutch was removed in an effort to reduce cost and hence the shaft was subjected to increased vibration and shock loading. Insufficient fatigue limit of the shaft was revealed by fatigue testing of the shafts taken from stock in a rotating-beam machine. As a corrective measure, the fatigue limit of shafts was increased to 760 MPA by nitriding for 10 h at 515 deg C.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001596
EISBN: 978-1-62708-225-9
... deflection, greatly increasing the torsional stresses on the spring. To understand the fatigue limits under these test conditions, a bench test was used to establish the fatigue strength of the springs. The bench tests showed that the failed springs had an unacceptable surface texture that reduced...
Abstract
During testing of compressors under start/stop conditions, several helical suspension springs failed. The ensuing failure investigation showed that the springs failed due to fatigue. The analysis showed that during start/stop testing the springs would undergo both a lateral and axial deflection, greatly increasing the torsional stresses on the spring. To understand the fatigue limits under these test conditions, a bench test was used to establish the fatigue strength of the springs. The bench tests showed that the failed springs had an unacceptable surface texture that reduced the fatigue life. Based on an understanding of the compressor motion, a Monte Carlo model was developed based on a linear damage theory to predict the fatigue life of the springs during start/stop conditions. The results of this model were compared to actual test data. The model showed that the design was marginal even for springs with acceptable surface texture. The model was then used to predict the fatigue life requirements on the bench test such that the reliability goals for the start/stop testing would be met, thus reducing the risk in qualifying the compressor.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047823
EISBN: 978-1-62708-236-5
.... The shaft surface both near and in the keyways indicated fretting which greatly reduced the fatigue limit of the shaft metal and initiated fatigue cracks. Fatigue marks were observed on the fractured key. Repetitive impact loading was responsible for propagation of the cracks. The high cyclic bending...
Abstract
High-horsepower electric motors were utilized to drive large compressors (made of 4340 steel shafts and gear-type couplings) required in a manufacturing process. The load was transmitted by two keys 180 deg apart. Six of the eight compressor shafts were found cracked in a keyway and one of them fractured after a few months of operation. Visual examination of fractured shaft revealed that the cracks originated from one of the keyways and propagated circumferentially around the shaft. The shaft and coupling slippage was indicated by the upset keys and this type of fracture. The shaft surface both near and in the keyways indicated fretting which greatly reduced the fatigue limit of the shaft metal and initiated fatigue cracks. Fatigue marks were observed on the fractured key. Repetitive impact loading was responsible for propagation of the cracks. The high cyclic bending stresses were caused by misalignment between the electric motor and compressor and were transmitted to the shaft through the geared coupling. Flexible-disk couplings capable of transmitting the required horsepower were installed on the shafts as a corrective measure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001309
EISBN: 978-1-62708-215-0
... over the fatigue limit of the material. A strain gage static loading test verified FEM results, and finite element techniques were applied in the design of reinforcing members to renovate the frames. Material properties were determined and welding procedures specified for the reinforcing members...
Abstract
Bending fatigue caused crack propagation and catastrophic failures at several locations near the welds on the low-carbon steel tubular cargo box frame of police three-wheel motorcycles. ANSYS finite element analysis revealed that bending stresses in some of the frame members were aggravated by poor detail design between vertical and horizontal tubes. Stresses observed in the ANSYS analysis were not sufficient to cause the onset of fatigue. However when compounded by stress concentration factors and in-service dynamic loading, the frame could have been regularly subjected to stresses over the fatigue limit of the material. A strain gage static loading test verified FEM results, and finite element techniques were applied in the design of reinforcing members to renovate the frames. Material properties were determined and welding procedures specified for the reinforcing members. Inspection intervals were devised to avoid future problems.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001786
EISBN: 978-1-62708-241-9
...) revealed areas of damage due to rubbing with evidence of cleavage fracture on the unaffected surfaces. The results of stress analysis indicated that repeated reversals of the spindle produced stresses exceeding the fatigue limit of the shaft material. These stresses led to the formation of microcracks...
Abstract
A heavy duty facing lathe failed when the tool post caught one of the jaws on the rotating chuck, causing the spline shaft that drives the main spindle to fracture. A detailed analysis of the fracture surfaces (including fractography, metallography, and analytical stress calculations) revealed areas of damage due to rubbing with evidence of cleavage fracture on the unaffected surfaces. The results of stress analysis indicated that repeated reversals of the spindle produced stresses exceeding the fatigue limit of the shaft material. These stresses led to the formation of microcracks in a retaining ring groove that were accelerated to sudden failure when the tool post and chuck collided.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0048592
EISBN: 978-1-62708-218-1
... was of insufficient alloy content. Also, the tensile strength and endurance limit were lower than specified and were inadequate for the application. The material for the cap screw was changed from modified 1035 steel to 5140 steel. Brittle fracture Fatigue limit Tensile strength 1035 UNS G10350 Fatigue...
Abstract
A drive-line assembly failed during vehicle testing. The vehicle had traveled 9022 km (5606 mi) before the failure occurred. Both the intact and fractured parts of the assembly were analyzed to determine the cause and sequence of failure. Visual examination of the assembly showed three of four bearing caps, two cap screws, and one universal-joint spider had fractured. Examination of the three fractured bearing caps and the spider showed no evidence of fatigue but showed that fracture occurred in a brittle manner. The bearing cap that was not destroyed still contained portions of the two fractured cap screws. It was found that the two cap screws failed in fatigue under service stresses. The three bearing caps and the universal-joint spider broke in a brittle manner. The properties of the material in the cap screws did not fulfill the specifications. The modified 1035 steel was of insufficient alloy content. Also, the tensile strength and endurance limit were lower than specified and were inadequate for the application. The material for the cap screw was changed from modified 1035 steel to 5140 steel.
Image
in Failure Analysis of Helical Suspension Springs under Compressor Start/Stop Conditions
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 11 Fatigue diagram showing the reduction in the fatigue strength of Spring A with poor texture as compared to springs with good texture. Also plotted are the fatigue limits based on the modified Goodman diagram in Fig. 10 .
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0006897
EISBN: 978-1-62708-222-8
... as stress points; therefore, the stress and number of stress cycles that cause corrosion fatigue failure of a metal are lower than the fatigue limit of the same metal without the corrosive environment. Fig. 1 Broken copper tail wires of an aerial clamp Fig. 2 Tail wires near failures. 3...
Abstract
The small cable (drop wire) providing service for individual subscribers from the aerial plant is held in place by a clamp made of a tin-coated brass body (attached to the cable) and a copper tail wire loop (attached to a galvanized steel hook or to a porcelain insulator). The tail wire is 2.6 mm (0.102 in.) diam annealed copper, and the clamp assembly must withstand a 2470 N (555 lb) load without breaking or slipping. A number of these clamps, located a few hundred feet from the ocean, have failed. The sharply broken wire indicated to weakening by abrasion. The copper tail wire failures had characteristics generally associated with corrosion fatigue. The broken wires showed multiple transgranular cracks near the failure, originating at the bases of pits. It was diagnosed that the copper tail wire failures were due to corrosion fatigue. The solution to this problem was to change the tail wire material for direct seashore exposure from annealed copper to annealed Monel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047850
EISBN: 978-1-62708-233-4
...). Recommendations The development of a quenched-and-tempered microstructure would result in an improvement of the fatigue strength of the shaft. A 40% increase in the fatigue limit could be effected by quenching and tempering the steel to a hardness of 30 to 37 HRC (286 to 344 HB) after machining. Shot peening...
Abstract
The fan drive support shaft, specified to be made of cold-drawn 1040 to 1045 steel, fractured after 2240 miles of service. It was revealed by visual examination of the shaft that the fracture had initiated near the fillet at an abrupt change in shaft diameter. The cracks originated at two locations approximately 180 deg apart on the outer surface of the shaft and propagated toward the center. Features typical of reversed-bending fatigue were exhibited by the fracture. A tensile specimen was machined from the center of the shaft and it indicated much lower yield strength (369 MPa) than specified. It was disclosed by metallographic examination that the microstructure was predominantly equiaxed ferrite and pearlite which indicated that the material was in either the hot-worked or normalized condition. An improvement of fatigue strength of the shaft by the development of a quenched-and-tempered microstructure was recommended.
Image
Published: 15 May 2022
Fig. 2 Stress-number of cycles to fatigue ( S - N ) behavior of 400 specimens of EN-24 steel tested near the fatigue limit. Source: Ref 17
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001388
EISBN: 978-1-62708-215-0
... loading with a stress ratio of 0.05 ( Fig. 10 ). The fatigue limit was approximately 50 MPa (7 ksi). Fig. 10 S-N curve for the same type of bolts as those that failed in service Stress Analysis It has been shown that the striation spacing in various materials is given by the following...
Abstract
JIS SCM435 steel bolts that connected the slewing ring to the base carrier on a truck crane failed during the lifting of steel piles. The bolts were double-ended stud types and had been in operation for 5600 h. Failure occurred in the root of the external thread that was in contact with the first internal thread in the slewing ring. Examination of plastic carbon replicas indicated that failure was the result of fatigue action. Failure was attributed to overloading during service and increased stress concentration on a few bolts due to nonuniform separations around the slewing ring. A design change to achieve equal separation between bolt holes was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001722
EISBN: 978-1-62708-236-5
... embrittlement and (2) minimise the reduction of fatigue strength due to plating, are conflicting. The heat treatment must therefore be selected to suit the particular components, the following information being given for guidance: The fatigue limit of high tensile steel components may be markedly reduced...
Abstract
The crankshaft of a 37.5-hp, 3-cylinder oil engine was examined. The engine had been dismantled for the purpose of a general overhaul and in the course of this work the crankpins were chromium-plated before regrinding. The engine was returned to service and after running for 290 h the crankshaft broke at the junction of the No. 3 crankpin and the crankweb nearest to the flywheel. A typical fatigue crack had originated at a number of points in the root of the fillet to the web. In its early stages it ran slightly into the web but turned back to the pin when it encountered the oil hole. The shaft had been made from a heat-treated alloy steel. The thickness of the plating was approximately 0.025 in. and numerous cracks were visible in it, several of which had given rise to cracks in the steel below. The primary cause of the crankshaft failure was the plating of the crankpins. The presence of the grooves alone would result in considerable intensification of stress in zones which are normally highly stressed, while the crazy cracking introduced a multiplicity of stress-raisers of a type almost ideal from the point of view of initiating fatigue cracks.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... as a function of the associated mean stress. At zero mean stress, the allowable stress amplitude is the effective fatigue limit for a specified number of cycles. As the mean stress increases, the permissible amplitudes steadily decrease until, at a mean stress equal to the ultimate tensile strength...
Abstract
This article describes three design-life methods or philosophies of fatigue, namely, infinite-life, finite-life, and damage tolerant. It outlines the three stages in the process of fatigue fracture: the initial fatigue damage leading to crack initiation, progressive cyclic growth of crack, and the sudden fracture of the remaining cross section. The article discusses the effects of loading and stress distribution on fatigue cracks, and reviews the fatigue behavior of materials when subjected to different loading conditions such as bending and loading. The article examines the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001842
EISBN: 978-1-62708-241-9
... steel heat affected zone metallurgical notch ring test cyclic bending stress fatigue limit ASTM A106 (seamless carbon steel pipe) UNS K02501 Introduction The fractured part of concern is a long, slender roll that was located in the dryer section of a paper manufacturing machine. Paper...
Abstract
A felt guide roll fractured in-service on a paper manufacturing machine, damaging the belt as well as multiple dryer rolls, nearby felt guide rolls, and the frame of the machine. The investigation included visual and stereoscopic examination, chemical and microstructural analysis, microhardness and tensile testing, stress calculations, and vibration measurements. Based on the results, the roll fracture was attributed to high-cycle fatigue associated with a plug weld over one of the five threaded fasteners added to secure a balance weight inside the roll. The balance weight was installed to compensate for variations in wall thickness (i.e., weight distribution) of the pipe product used to make the roll. According to the investigation, resonance and vibration, which were initially considered, did not cause the failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0001784
EISBN: 978-1-62708-218-1
... on fatigue limit. (a) Effect of surface condition on fatigue behavior of steels that were hardened and tempered to 269 to 285 HB. (b) Effect of tensile strength level and surface condition of steel on fatigue limit; strengths are given for 10 6 cycle fatigue life. Figure 4 shows the relationship...
Abstract
Field fatigue failures occurred in a hand-operated gear shift lever mechanism made of 1049 medium carbon steel hardened to 269 to 285 HB. The failures occurred in the 3.18 mm (0.127 in.) radius. Redesign increased the shift lever's diameter to 25 mm (1 in.) and the radius to 4.75 mm (0.187 in.). Also, instead of the as-forged surface, it was expedient to machine the radius. The as-forged surface at 360 MPa (52 ksi) maximum working stress would not ensure satisfactory life because the recalculated maximum stress was 390 MPa (57 ksi). However, the machined surface with a maximum working stress of 475 MPa (69 ksi) gives a safe margin above the 390 MPa (57 ksi) requirement for design stress. Interpreting these values, the forged surface should have a life expectancy of 1,000,000 cycles of stress. However, because the load cycle was somewhat uncertain, the machined radius was chosen to obtain a greater margin of safety. Redesigning eliminated the failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048134
EISBN: 978-1-62708-235-8
... toward the outside of the bend. The crack had been initiated at a spiral mark where the fatigue limit had been decreased by a weak skin. The small bend radius could create a condition that would result in straining at the bend zone and therefore render the section weak. It is difficult to determine...
Abstract
A copper alloy C51000 (phosphor bronze, 5%A) failed prematurely during life testing of several such springs. The wire used for the springs was 0.46 mm (0.018 in.) in diam and was in the spring-temper condition. The springs were revealed to be subjected to cyclic loading, in the horizontal and vertical planes during the testing. The fracture was revealed to have occurred in bend 2. An indentation, presumably caused by the bending tool during forming, at the inner surface of the bend where fracture occurred was revealed by microscopic examination. Spiral marks produced on springs during rotary straightening were observed. A crack that had originated at the surface at the inside bend and had propagated toward the outside of the bend was revealed by microscopy of a longitudinal section taken through bend 2. The small bend radius was interpreted to contribute to spring fatigue as a result of result in straining at the bend zone. The spring was concluded to have failed in fatigue. It was recommended that the springs should be made of wire free from straightener marks and the bending tool should be redesigned so as not to indent the wire.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001459
EISBN: 978-1-62708-234-1
... Abstract Fundamentals of fatigue failure are outlined. Addressed are fatigue crack characteristics, basic crack types, unidirectional bending, alternate bending, rotary bending, torsion, direct stress, and combined stress. Stress cycle, endurance limits, under and overstressing, stress...
Abstract
Fundamentals of fatigue failure are outlined. Addressed are fatigue crack characteristics, basic crack types, unidirectional bending, alternate bending, rotary bending, torsion, direct stress, and combined stress. Stress cycle, endurance limits, under and overstressing, stress concentration, and surface condition are discussed. Sections are devoted to fatigue crack assessment, corrosion relation to fatigue failure, and the micro-mechanisms of fatigue failure. Materials considered include steels. Photographs of service failures are used to illustrate features alluded to in the text.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001617
EISBN: 978-1-62708-227-3
... low (250 to 300 MPa/36 to 44 ksi) and is similar to many other nonferrous materials. NAB does not exhibit a fatigue limit and, because in-service stresses generally appeared to be low, it seems likely that very high numbers of cycles (over fairly short periods in service) were involved, suggesting...
Abstract
Failures of various types of hydraulic couplings used to connect pipes in a naval vessel are described and used to illustrate some of the general procedures for failure analysis. Cracking of couplings, which were manufactured from nickel-aluminum- bronze extruded bar, occurred in both seawater and air environments. Cracks initiated at an unusually wide variety of sites and propagated in either longitudinal or circumferential directions with respect to the axis of the couplings. Fracture surfaces were intergranular and exhibited little or no sign of corrosion (for couplings cracked in air), and there was very limited plasticity. Macroscopic progression markings were observed on fracture surfaces of several couplings but were not generally evident. At very high magnifications, numerous slip lines, progression markings, and striations were observed. In a few cases, where complete separation had occurred in service, small areas of dimpled overload fracture were observed. It was concluded from these observations, and from comparisons of cracks produced in service with cracks produced by laboratory testing under various conditions, that cracking had occurred by fatigue. The primary cause of failure was probably the unanticipated presence of high-frequency stress cycles with very low amplitudes, possibly due to vibration, resonance, or acoustic waves transmitted through the hydraulic fluid. Secondary causes of failure included the presence of high tensile residual stresses in one type of coupling, undue stress concentrations at some of the crack-initiation sites, and overtorquing of some couplings during installation. Recommendations on ways to prevent further failures based on these causes are discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
... over the volume rather than assuming the entire stressed region experiences the maximum stress, as well as introducing the concept of a fatigue limit, resulting in: (Eq 5) ln ( 1 / S ) = a ∫ V N e ( τ max − τ ∞ ) τ 0 c z 0 h dV where τ...
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
1