1-20 of 614 Search Results for

Fatigue (materials)

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047125
EISBN: 978-1-62708-217-4
... service because it developed a fatigue crack at a material defect. Detail A shows the area where the crack occurred and a view of the fracture surface revealed when the hub was broken open to examine the crack. View B-B, a macrograph of the fracture surface, shows the origin of the fatigue crack (0...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006421
EISBN: 978-1-62708-217-4
... propagation Fasteners High cycle fatigue Materials substitution AZ31B UNS M11311 (Other, general, or unspecified) corrosion Fatigue fracture Cracks were found on the wing leading edge of a test aircraft. The cracks were located on the inboard side of the No. 2 and No. 3 engines. Crack lengths were...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001732
EISBN: 978-1-62708-218-1
.... The Weibull distribution is the statistical model used as a basis for these techniques. This method of failure analysis provides the engineer with clear, positive design direction. Door lock assembly Fatigue (materials) Statistical analysis Weibull distribution Metal (Other, miscellaneous...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... component. As with other fracture modes, proper identification of fatigue requires understanding of the fracture behavior of the particular material subject to failure analysis. At least some knowledge of environmental and service conditions is usually necessary. Evaluation of loading conditions, often...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001192
EISBN: 978-1-62708-234-1
... Abstract The fracture cause had to be determined in a three-cylinder crankshaft made of chrome steel 34Cr4 (Material No. 1.7033) according to DIN 17200. The fracture occurred after only 150 h of operation. The fracture was of the bend fatigue type which originated in the fillet of the main...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
.... This article focuses on fractography of fatigue. However, it should be noted that fractography is only part of the failure analysis of a fractured component. As with other fracture mechanisms, proper identification of fatigue requires understanding of the fracture behavior of the particular material subject...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... materials are superior to austenitic stainless steels from the viewpoint of fatigue resistance, with titanium and titanium alloys, cobalt alloys, the 400-series stainless steels, and custom-processed high-carbon steels having recently been discussed as potential candidate materials for implant fixation...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047423
EISBN: 978-1-62708-236-5
... revealed a fatigue crack through about one-third of the cross section. A secondary fatigue crack, perpendicular to the main fracture, was also observed. The composition of the weld deposit corresponded to a heat treatable flux-cored arc welding filler material that was known to have been used for repair...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046146
EISBN: 978-1-62708-217-4
... hole since no material defects were found at the failure origin. Recommendations included redesign of the lubrication hole, shot peeing of the faces of the lug for added resistance to fatigue failure, and changing of the forging material to aluminum alloy 7175-T736 for its higher mechanical properties...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001359
EISBN: 978-1-62708-215-0
... to fatigue testing. The fatigue cracks had initiated in the vicinity of these beads and propagated through the blade material. Fig. 1 Fatigue crack associated with a bead on the blade surface Testing Procedure and Results Surface Examination Visual Visual examination of the fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047917
EISBN: 978-1-62708-227-3
... of AISI type 440C stainless steel, with a plastic material between the two. The plastic material was bonded to the outer ring. Fig. 1 Plastic-lined stainless steel spherical bearing for a hydrofoil that failed by corrosion fatigue. (a) Construction of bearing and location of fractures. Dimensions...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001546
EISBN: 978-1-62708-217-4
... of sample exhibiting dual failure. ×15. B. Section through sample showing fatigue damage. In later stage, pieces become detached from cladding, leaving a pit like the one in C. magnification in both cases is ×100. D. depicts fracture face of a sample showing fatigue failure through the parent material...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001042
EISBN: 978-1-62708-214-3
... this condition. This cold working may also have resulted in high stresses being present in the material. Conclusion and Recommendations Most Probable Cause The exact reason for the fatigue crack initiation was not known at the time of the original investigation, but the examiners believe an assembly...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... of crack, and the sudden fracture of the remaining cross section. The article discusses the effects of loading and stress distribution on fatigue cracks, and reviews the fatigue behavior of materials when subjected to different loading conditions such as bending and loading. The article examines...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
... loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended. Biomedical material 316L UNS S31603 Pitting corrosion Fatigue fracture Background Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001462
EISBN: 978-1-62708-224-2
... at the mid-length of the sides. Brinell hardness values confirmed that the link was made from the higher tensile grade of material. The cracks were due to fatigue, there being no indications that the weld was initially defective. Butt welds Chains Steel chain Fatigue fracture The following case...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048413
EISBN: 978-1-62708-226-6
... on the surface during cyclic loading were observed. The material was showed by the deformation structure to be in the cold-worked condition and was termed to not be the cause of the implant failure. Cyclic loads Slip bands Surgical implants 316L UNS S31603 Fatigue fracture Figure 1(a) shows...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001459
EISBN: 978-1-62708-234-1
... concentration, and surface condition are discussed. Sections are devoted to fatigue crack assessment, corrosion relation to fatigue failure, and the micro-mechanisms of fatigue failure. Materials considered include steels. Photographs of service failures are used to illustrate features alluded to in the text...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001052
EISBN: 978-1-62708-214-3
... ). This phenomenon was attributed to lower material ductility at the weld area. Most of the cracks followed a multidirectional/circular pattern, occasionally chipping off the convolutions—a indication of high-resonance fatigue-type cracking. Fig. 1 Failed exhaust hose assembly. Fig. 2 Closeup view...