Skip Nav Destination
Close Modal
Search Results for
Fast reactors
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 37
Search Results for Fast reactors
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001315
EISBN: 978-1-62708-215-0
... Abstract AM350 stainless steel bellows used in the control rod drive mechanism of a fast breeder reactor failed after 1000 h of service in sodium at 550 deg C (1020 deg F). Helium leak testing indicated that leaks had occurred at various regions of the welded joints between the convolutes...
Abstract
AM350 stainless steel bellows used in the control rod drive mechanism of a fast breeder reactor failed after 1000 h of service in sodium at 550 deg C (1020 deg F). Helium leak testing indicated that leaks had occurred at various regions of the welded joints between the convolutes in the bellows. The weld failure was attributed to poor quality assurance during fabrication, which resulted in cracklike openings at the fusion zone. The openings extended during tensile loading. Use of proper welding procedures and quality control measures were recommended to prevent future failures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001351
EISBN: 978-1-62708-215-0
... Abstract A number of AISI 347 stainless steel bellows intended for use in the control rod drive mechanism of a fast breeder reactor were found to be leaking before being placed in service. The bellows, which had been in storage for one year in a seacoast environment, exhibited a leak rate...
Abstract
A number of AISI 347 stainless steel bellows intended for use in the control rod drive mechanism of a fast breeder reactor were found to be leaking before being placed in service. The bellows, which had been in storage for one year in a seacoast environment, exhibited a leak rate on the order of 1 x 10−7 cu cm/s (6 x 10−8 cu in./s). Optical metallography revealed numerous pits and cracks on the surfaces of the bellow convolutes, which had been welded to one another using an autogenous gas tungsten arc welding process. Microhardness measurements indicated that the bellows had not been adequately stress relieved. It was recommended that a complete stress-relieving treatment be applied to the formed bellows. Improvement of storage conditions to avoid direct and prolonged contact of the bellows with the humid, chloride-containing environment was also recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001350
EISBN: 978-1-62708-215-0
... Abstract Upon arrival at the erection site, an AISI type 316L stainless steel tank intended for storage of fast breeder test reactor coolant (liquid sodium) exhibited cracks on its shell at two of four shell/nozzle fillet-welded joint regions. The tank had been transported from the manufacturer...
Abstract
Upon arrival at the erection site, an AISI type 316L stainless steel tank intended for storage of fast breeder test reactor coolant (liquid sodium) exhibited cracks on its shell at two of four shell/nozzle fillet-welded joint regions. The tank had been transported from the manufacturer to the erection site by road, a distance of about 800 km (500 mi). During transport, the nozzles were kept at an angle of 45 deg to the vertical because of low clearance heights in road tunnels. The two damaged joints were unsupported at their ends inside the vessel, unlike the two uncracked nozzles. Surface examination showed ratchet marks at the edges of the fracture surface, indicating that loading was of the rotating bending type. Electron fractography using the two-stage replica method revealed striation marks characteristic of fatigue fracture. The striations indicated that the cracks had advanced on many “mini-fronts,” also indicative of nonuniform loading such as rotating bending. It was recommended that a support be added at the inside end of the nozzles to rigidly connect with the shell. In addition to avoiding transport problems, this design modification would reduce fatigue loading that occurs in service due to vibration of the nozzles during filling and draining of the tank.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001282
EISBN: 978-1-62708-215-0
... Abstract Two AISI type 316 stainless steel components intended for use in a reducer section for sodium piping in a fast breeder test reactor were found to be severely corroded—the first soon after pickling, and the second after passivation treatments. Metallographic examination revealed...
Abstract
Two AISI type 316 stainless steel components intended for use in a reducer section for sodium piping in a fast breeder test reactor were found to be severely corroded—the first soon after pickling, and the second after passivation treatments. Metallographic examination revealed that one of the components was in a highly sensitized condition and that the pickling and passivation had resulted in severe intergranular corrosion. The other component was fabricated from thick plate and, after machining, the outer surface represented the transverse section of the original plate. Pickling and passivation resulted in severe pitting because of end-grain effect. Strict control of heat treatment parameters to prevent sensitization and modification of pickling and passivating conditions for machined components were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001370
EISBN: 978-1-62708-215-0
...% orthophosphoric acid, more macroscopic details were observed, such as a corrugated periphery with step like features called ratchet marks. Fig. 3 Fracture surface, showing the region of final fast fracture Scanning Electron Microscopy/Fractography Examination of the cleaned fracture surface...
Abstract
A service water pump in a nuclear reactor failed when its shaft gave way. The fracture originated in the threaded portion of the sleeve nut on the drive-end side of the shaft. Results of the failure analysis showed that the cracking initiated at the thread root as a result of corrosion fatigue. Crack propagation occurred either by corrosion or mechanical fatigue. Evidence was found indicating high rotary bending stresses on the shaft during operation. The nonstandard composition of the En 8 steel used in the shaft and irregular maintenance reduced the life of the shaft. Recommendations included use of a case-hardened En 8 steel with the correct composition and regular maintenance of the pump.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048840
EISBN: 978-1-62708-220-4
... bands, which in ferritic steels are caused by the highly localized deformation associated with fast fracture or dynamic stresses. This led to the conclusion that the fracture initiated at multiple sites within one plate, starting at the root of the weld, then initiated in neighboring plates in rapid...
Abstract
A spherical carbon steel fixed-catalyst bed reactor, fabricated from French steel A42C-3S, approximately equivalent to ASTM A201 grade B, failed after 20 years of service while in a standby condition. The unit was found to contain primarily hydrogen at the time of failure. The vessel had a type 304 stainless steel shroud around the catalyst bed as protection against the overheating that was possible if the gas bypassed the bed through the refractory material. The failure was observed to have begun at the toe of the shroud-support ring weld. The ring was found to have a number of small cracks at the root of the weld. The cleavage mode of fracture was confirmed by SEM. The presence of extensive secondary cracking and twinning (Neumann bands) where the fracture followed the line of the shroud-support ring was revealed by metallography. It was revealed by refinery maintenance records that the ring had been removed for hydrotest and welded without any postweld heat treatment. The final cause of failure was concluded to be cracking that developed during the installation of the new shroud ring. Stress-relief heat treatments were recommended to be performed to reduce residual-stress levels after welding.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001515
EISBN: 978-1-62708-229-7
... the fracture stopped at a length of about 3.7m. Small specimens were machined and tested ( 6 ) from material adjacent to the stable crack growth region and near the end of the fast fracture. A burst test of a 0.5 m section of tubing was also conducted at 30°C. The estimated critical crack length (from small...
Abstract
This paper describes the analysis of the failure of a Zr-2.5Nb pressure tube in a CANDU reactor. The failure sequence was established as: (1) the existence of an undetected manufacturing flaw in the form of a lamination, (2) in-service development of the flaw by oxidation of the lamination, (3) delayed hydride cracking, which extended the flaw through the wall of the tube, resulting in leakage, and (4) rupture of the tube by cold pressurization while the reactor was shut down. The comprehensive failure analysis led to a remedial action plan that permitted the reactor to be returned to full-power operation and ensured a low probability of a similar occurrence for all CANDU reactors.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048850
EISBN: 978-1-62708-229-7
... identified as CREPLACYL and with material data taken from the Liquid Metal Fast Breeder Reactor Materials Handbook (U.S. Department of Energy). The resultant elastic/plastic/creep deformation analysis indicated that a severe thermal downshock could explain the pattern and that one or more downshocks...
Abstract
Cracks on the outer surface near a hanger lug were revealed by visual inspection of a type 316 stainless steel main steam line of a major utility boiler system. Cracking was found to have initiated at the outside of the pipe wall or immediately beneath the surface. The microstructure of the failed pipe was found to consist of a matrix precipitate array (M23C6) and large s-phase particles in the grain boundaries. A portable grinding tool was used to prepare the surface and followed by swab etching. All material upstream of the boiler stop valve was revealed to have oriented the cracking normally or nearly so to the main hoop stress direction. Residual-stress measurements were made using a hole-drilling technique and strain gage rosettes. Large tensile axial residual stresses were measured at nearly every location investigated with a large residual hoop stress was found for locations before the stop valve. It was concluded using thermal stress analysis done using numerical methods and software identified as CREPLACYL that one or more severe thermal downshocks might cause the damage pattern that was found. The root cause of the failure was identified to be thermal fatigue, with associated creep relaxation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001146
EISBN: 978-1-62708-229-7
... . The fracture face of Specimen NRC-1 was observed visually; it was brittle (no observable ductility evident) and had no gross indications of fatigue evident (beach marks, etc.). There were some marks (rachet-type) on the fracture surface, but these would be typical of a fast fracture. Fig. 1 Optical...
Abstract
A metallurgical failure analysis was performed on pieces of the cracked vent header pipe from the Edwin I. Hatch Unit 2 Nuclear power plant. The analysis consisted of optical microscopy, chemical analysis, mechanical Charpy impact testing, and fractography. It was found that the material of the vent header met the mechanical and chemical properties of ASTM A516 Grade 70 carbon-manganese steel material and microstructures were consistent with this material. Fracture faces of the cracked pipe were predominantly brittle in appearance with no evidence of fatigue contribution. The NDTT (Nil ductility Transition Temperature) for this material was approximately -51 deg C (-60 deg F). The fact that the material's NDTT was significantly out of the normal operating range of the pipe suggested an impingement of low temperature nitrogen (caused by a faulty torus inerting system) induced a thermal shock in the pipe which, when cooled below its NDTT, cracked in a brittle manner.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
Abstract
This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001065
EISBN: 978-1-62708-214-3
... and Results Surface Examination Scanning Electron Microscopy/Fractography Various areas around the fast-fracture edges of the specimens were examined by SEM. All of the fractures exhibited a dimpled rupture (ductile) appearance, with characteristics typical of fast ductile fracture. The examination...
Abstract
A 460 mm (18 in.) diam suction line to the main feed water pump for a nuclear power plant failed in a violent, catastrophic manner. Samples of pipe, elbow, and weld materials (ASTM A106 grade B carbon steel, ASTM A234 grade WPB carbon steel, and E7018 carbon steel electrode, respectively) from the suction line were analyzed. Evidence of overall thinning of the elbow and pipe material and ductile tearing of fractures indicated that the feed water pipe failed as a result of an erosion corrosion mechanism, which thinned the wall sufficiently to cause rapid, ductile tearing of the material after its design stress had been exceeded. It was recommended that steel with a higher chromium content be used to mitigate the erosion corrosion potential in the lines and that more rigorous nondestructive (ultrasonic) examinations be performed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... chloride environment at 95 °C (200 °F). Cracks are branching and transgranular. (b) Caustic SCC in the HAZ of a type 316L stainless steel NaOH reactor vessel. Cracks are branching and intergranular. There are exceptions to the general rule that stress-corrosion cracks are branched. For example, some...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... that complicate analyses using traditional methods. This ability to analyze complex components is the reason for the proliferation of FEA as a design tool. The size and complexity of models that are routinely analyzed is increasing as fast as the computing speed and data storage capacity of computer workstations...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006803
EISBN: 978-1-62708-329-4
... ). This method was founded on polynomial response surfaces and the fast probability integrator method ( Ref 11 ). A large number of methods and techniques have been developed since the 1950s and polynomial fitting approaches ( Ref 23 ). The steps usually considered when developing a response surface...
Abstract
This article provides an outline of the issues to consider in performing a probabilistic life assessment. It begins with an historical background and introduces the most common methods. The article then describes those methods covering subjects such as the required random variable definitions, how uncertainty is quantified, and input for the associated random variables, as well as the characterization of the response uncertainty. Next, it focuses on specific and generic uncertainty propagation techniques: first- and second-order reliability methods, the response surface method, and the most frequently used simulation methods, standard Monte Carlo sampling, Latin hypercube sampling, and discrete probability distribution sampling. Further, the article discusses methods developed to analyze the results of probabilistic methods and covers the use of epistemic and aleatory sampling as well as several statistical techniques. Finally, it illustrates some of the techniques with application problems for which probabilistic analysis is an essential element.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... of models that are routinely analyzed is increasing as fast as the computing speed and data storage capacity of computer workstations. Today (2020), it is not uncommon for large 3D solid models to be solved on PC-based computing systems. Figure 4 shows an example of just such a 3D model that can...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
..., and finally dropping very fast near the melting point. The increase above the minimum in the curve is often assumed to be due to dynamic recrystallization. Data on total elongation and reduction of area at various stress levels for a low-alloy steel at 540 °C (1000 °F) and a stainless steel at 705 °C...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... a minimum, then increasing again, and finally dropping very fast near the melting point. The increase above the minimum in the curve is often assumed to be due to dynamic recrystallization. Data on total elongation and reduction of area at various stress levels for a low-alloy steel at 540 °C (1000 °F...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... Components,” this is a problem frequently encountered in heat exchangers, where pipes or fuel rod containers are restrained by supports or baffles but experience vibration as a result of fluid flow. Two types of wear can be distinguished in the practical case encountered in nuclear reactors. The first...
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
1