Skip Nav Destination
Close Modal
Search Results for
Eyebars
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Search Results for Eyebars
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001147
EISBN: 978-1-62708-219-8
... Abstract The century-old Harvard bridge spans the Charles River between Boston and Cambridge. About half of the 23 spans are suspended by wrought iron eyebars. Recent failures of some of these eyebars were examined. The primary cause of failure was the seizure of the joints at the eyebar pin...
Abstract
The century-old Harvard bridge spans the Charles River between Boston and Cambridge. About half of the 23 spans are suspended by wrought iron eyebars. Recent failures of some of these eyebars were examined. The primary cause of failure was the seizure of the joints at the eyebar pin locations as a result of the intrusion of water and salt, and the consequent heavy corrosion of the joint. The seizure of these joints led to high edgewise bending stress in the bars as the bridge underwent thermal movement. The cracking was enhanced by the presence of the corrosive medium so that the cracks were initiated and caused to grow by some combination of corrosion fatigue and stress-corrosion cracking, the former probably being predominant.
Image
in Harvard Bridge Eyebar Failures
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 3 Downstream Eyebar.
More
Image
in Harvard Bridge Eyebar Failures
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 5 Upstream Eyebar.
More