1-20 of 118 Search Results for

Extrusions

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046015
EISBN: 978-1-62708-235-8
... Abstract A two-section extension ladder, made from 6061-T6 aluminum alloy extrusions and stampings that were riveted together at each rung location and at the ends of side rails, broke in service after having been used at the sites of several fires by the fire department of a large city...
Image
Published: 01 January 2002
Fig. 50 Wavy slip. (a) Schematic of slip band extrusions in the matrix at a matrix-inclusion interface or at the surface of a notch. (b) Wavy slip lines (arrow) in oxygen-free, high-conductivity copper More
Image
Published: 15 January 2021
Fig. 51 Wavy slip. (a) Schematic of slip band extrusions in the matrix at a matrix/inclusion interface or at the surface of a notch. (b) Wavy slip lines (arrow) in oxygen-free, high-conductivity copper More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0045903
EISBN: 978-1-62708-223-5
... Abstract A 230 mm (9 in.) thick casing, fabricated from ASTM 235-55 low-carbon steel, of a 450 Mg (500 ton) extrusion press failed after 27 years of service. Initial visual examination revealed an area that exhibited multiple origins and classic beach marks radiating out approximately 75 mm (3...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001287
EISBN: 978-1-62708-215-0
... Abstract A recurring piston shaft failure problem on the billet-loading tray of an extrusion press was investigated. Two shafts fractured within a period of 10 days. The shaft was machined from normalized EN3 (AISI C1022) steel stock without further treatment. Visual, microstructural, chemical...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
... Abstract Several failed dies were analyzed and the results were used to evaluate fatigue damage models that have been developed to predict die life and aid in design and process optimization. The dies used in the investigation were made of H13 steels and fractured during the hot extrusion of Al...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0092122
EISBN: 978-1-62708-222-8
... beyond the yield strength of the alloy. Recommendations included increasing the thickness of the flange and web of the side-rail extrusion. Buckling Extrusions Plastic deformation 6063-T6 UNS A96063 Buckling Several aluminum alloy extension ladders of the same size and type collapsed...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001024
EISBN: 978-1-62708-214-3
... 6061-T651 aluminum alloy extrusion and 26 fiberglass “pockets” that provided the trailing-edge airfoil shape. Visual examination of the fracture surface of the aluminum extrusion indicated fatigue crack growth followed by ductile overload separation. Examination of the fatigue fracture region revealed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001455
EISBN: 978-1-62708-234-1
... are mostly produced by extrusion. Some material processed this way has been prone to exfoliation corrosion. Extended aging for 24 h at a temperature of 185 deg C (365 deg F) virtually suppresses the tendency for exfoliation corrosion to develop. Also, the use of a sprayed coating, either of aluminum or Al...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001546
EISBN: 978-1-62708-217-4
... material, and those that exhibited a dual failure. The last category failed in the adhesive bond and also showed a type of pitting on one face of the base material. In a third case, a 2024-T4 extrusion section was found to exhibit blistering after chemical milling. The presence of interconnecting...
Image
Published: 01 January 2002
Fig. 22 Extrusion-type defect in (a) centrally located rib and (b) die-design modification used to avoid defect More
Image
Published: 01 January 2002
Fig. 32 Austenitic stainless steel high-energy-rate forged extrusion. Forging temperature: 815 °C (1500 °F); 65% reduction in area; ε = 1.4 × 10 3 s −1 . (a) View of extrusion showing spiral cracks. (b) Optical micrograph showing the microstructure at the tip of one of the cracks More
Image
Published: 01 January 2002
Fig. 3 Aluminum alloy 6063-T6 extension-ladder side-rail extrusion that failed by plastic deformation and subsequent buckling. (a) Configuration and dimensions (given in inches). (b) Relation of maximum applied load to the section thickness of the flanges and web of the side-rail extrusion. More
Image
Published: 01 January 2002
Fig. 41 Crystallographic fatigue of 6000-series aluminum extrusion near fracture origin in rotating beam specimen. Global crack propagation direction from bottom to top in this SEM view More
Image
Published: 01 June 2019
Fig. 1 Schematic of extrusion press casing. Cross-sectional view More
Image
Published: 01 June 2019
Fig. 3 EPMA analysis of inclusion stringers in failed extrusion press. (a) SEM micrograph of metallographic section near bleed hole. Note large inclusions. 490x. (b) EDX dot map of manganese. (c) EDX dot mop of sulfur More
Image
Published: 01 June 2019
Fig. 4 Defect on as-received extrusion. Note appearance of lamination. ×100. More
Image
Published: 15 January 2021
Fig. 3 Aluminum alloy 6063-T6 extension-ladder side-rail extrusion that failed by plastic deformation and subsequent buckling. (a) Configuration and dimensions (given in inches). (b) Relation of maximum applied load to the section thickness of the flanges and web of the side-rail extrusion More
Image
Published: 15 January 2021
Fig. 41 Crystallographic fatigue of 6000-series aluminum extrusion near fracture origin in rotating-beam specimen. Global crack propagation direction from bottom to top in this scanning electron microscope view More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 6063-T6 extension-ladder side-rail extrusion that failed by plastic deformation and subsequent buckling. (a) Configuration and dimensions (given in inches). (b) Relation of maximum applied load to the section thickness of the flanges and web of the side-rail extrusion. More