Skip Nav Destination
Close Modal
Search Results for
Expansion joints
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 134
Search Results for Expansion joints
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001105
EISBN: 978-1-62708-214-3
... Abstract A tie rod, nut, and bellows from a failed 610 mm (24 in.) diam tied universal expansion joint that carried tail gases consisting of N 2 + O 2 with slight traces of nitrogen oxides and water were examined. The materials were SA 193-B7 (AISI 4140), SA 194–214, and Incoloy 800H...
Abstract
A tie rod, nut, and bellows from a failed 610 mm (24 in.) diam tied universal expansion joint that carried tail gases consisting of N 2 + O 2 with slight traces of nitrogen oxides and water were examined. The materials were SA 193-B7 (AISI 4140), SA 194–214, and Incoloy 800H, respectively. Visual examination of the bellows revealed cracks in heavily cold-worked areas (both inside and outside) and considerable corrosion. SEM analysis showed a classical intergranular failure pattern with microcracking. The threaded tie rod microstructure contained spheroidized carbide that was more pronounced at the tie rod end of the failure. Energy-dispersive X-ray analysis of fracture surfaces from the bellows showed the presence of chlorine and sulfur. Failure of the bellows was attributed to stress-corrosion cracking, with chlorine and sulfur being the corroding agents. The rod damage was the result of failure of the bellows, which allowed escaping hot gases to impinge on the tie rods and heat them to approximately 595 deg C (1100 deg F). It was recommended that the insulation be analyzed to determine the origin of the chlorine and sulfur and that it be replaced if necessary.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001342
EISBN: 978-1-62708-215-0
... Abstract A type 321 stainless steel downcomer expansion joint that handled process gases was found to be leaking approximately 2 to 3 weeks after installation. The expansion joint was the second such coupling placed in the plant after failure of the original bellows. The failed joint...
Abstract
A type 321 stainless steel downcomer expansion joint that handled process gases was found to be leaking approximately 2 to 3 weeks after installation. The expansion joint was the second such coupling placed in the plant after failure of the original bellows. The failed joint was disassembled and examined to determine the cause of failure. Energy-dispersive x-ray analysis revealed significant peaks for chlorine and phosphorus, indicating failure by chloride stress-corrosion cracking (SCC). Cracks in the liner and bellows exhibited a branched pattern also typical of SCC. Cracks through the inner liner initiated on the outer surface of the liner and propagated inward, whereas cracks in the bellows originated on the inner surface and propagated outward. Stress-corrosion cracking of the assembly was caused by chloride contaminants trapped inside the bellows following hydrostatic testing. Checking the test fluid for chloride and removing all fluids after hydrostatic testing were recommended to prevent further failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046252
EISBN: 978-1-62708-229-7
... Abstract A type 321 stainless steel bellows expansion joint on a 17-cm (6 in.) OD inlet line (347 stainless) in a gas-turbine test facility cracked during operation. The line carried high-purity nitrogen gas at 1034 kPa (150 psi) with a flow rate of 5.4 to 8.2 kg/s (12 to 18 lb/s). Cracking...
Abstract
A type 321 stainless steel bellows expansion joint on a 17-cm (6 in.) OD inlet line (347 stainless) in a gas-turbine test facility cracked during operation. The line carried high-purity nitrogen gas at 1034 kPa (150 psi) with a flow rate of 5.4 to 8.2 kg/s (12 to 18 lb/s). Cracking occurred in welded joints and in unwelded portions of the bellows. The bellows were made by forming the convolution halves from stainless steel sheet, then welding the convolutions together. Evidence from visual examination, liquid penetrant inspection chemical analysis, hardness tests, and metallographic examination of sections etched with Vilella's reagent supports the conclusions that failure of the bellows occurred by intergranular fatigue cracking. Secondary degrading effects on the piping existed as well. Recommendations included the acceptability of Type 321 stainless steel (provided open-cycle testing does not result in surface oxidation and crevices) Although type 347 stainless steel would be better, and Inconel 600 would be an even better choice. Welds would also need modified processing for reheating and annealing. Prevention of oil leakage into the system would minimize carburization of the piping and bellows.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001324
EISBN: 978-1-62708-215-0
... Abstract A type 430Ti stainless steel flue gas expansion joint cracked because of caustic-induced stress-corrosion cracking. Energy-dispersive X-ray spectroscope analysis of the fracture surface deposits revealed the presence of sodium and potassium—caustics in hydroxide form. Primary fracture...
Abstract
A type 430Ti stainless steel flue gas expansion joint cracked because of caustic-induced stress-corrosion cracking. Energy-dispersive X-ray spectroscope analysis of the fracture surface deposits revealed the presence of sodium and potassium—caustics in hydroxide form. Primary fracture surfaces were all similar in appearance, and a primary crack origin could not be identified. A secondary crack brought to fracture in the laboratory showed brittle, cleavage features rather than classic, tensile overload features. This suggested that the material was embrittled.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001682
EISBN: 978-1-62708-229-7
... Abstract The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential...
Abstract
The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089730
EISBN: 978-1-62708-233-4
... Abstract Stainless steel liners (AISI type 321) used in bellows-type expansion joints in a duct assembly installed in a low-pressure nitrogen gas system failed in service. The duct assembly consisted of two expansion joints connected by a 32 cm (12 in.) OD pipe of ASTM A106 grade B steel...
Abstract
Stainless steel liners (AISI type 321) used in bellows-type expansion joints in a duct assembly installed in a low-pressure nitrogen gas system failed in service. The duct assembly consisted of two expansion joints connected by a 32 cm (12 in.) OD pipe of ASTM A106 grade B steel. Elbows made of ASTM A234 grade B steel were attached to each end of the assembly, 180 deg apart. A 1.3 mm (0.050 in.) thick liner with an OD of 29 cm (11 in.) was welded inside each joint. The upstream ends were stable, but the downstream ends of the liners remained free, allowing the components to move with the expansion and contraction of the bellows. Investigation (visual inspection, hardness testing, and 30x fractographs) supported the conclusion that the liners failed in fatigue initiated at the intersection of the longitudinal weld forming the liner and the circumferential weld by which it attached to the bellows assembly. Recommendations included increasing the thickness of the liners from 1.3 to 1.9 mm (0.050 to 0.075 in.) in order to damp some of the stress-producing vibrations.
Image
Published: 30 August 2021
Fig. 6 Dissimilar-metal expansion joint failure. (a) Diagram showing the expansion joint braze where the intermetallic formed. (b) Cross section showing the intermetallic layer. Original magnification: 15×. (c) Cracked intermetallic between the copper braze (top) and the stainless steel weld
More
Image
Published: 15 January 2021
Fig. 4 Fractured gas turbine expansion-joint flange bolts that failed during service. Specified material for both bolts and mating nuts: zinc-plated carbon steel
More
Image
in Reactor Cooling Water Expansion Joint Bellows: The Role of the Seam Weld in Fatigue Crack Development
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Reactor Cooling Water Expansion Joint Bellows: The Role of the Seam Weld in Fatigue Crack Development
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 3 Expansion Joint Once Removed from Service. Arrow Indicates Position of Flange When Installed.
More
Image
in Caustic-Induced Stress-Corrosion Cracking of a Flue Gas Expansion Joint
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 1 (a) Expansion joint section as received for analysis. (b) Secondary crack (arrows) before it was fractured open in the laboratory.
More
Image
in Caustic-Induced Stress-Corrosion Cracking of a Flue Gas Expansion Joint
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 6 Typical EDS spectrum for the deposits on the expansion joint fracture surfaces. LT = 100s.
More
Image
in Stress-Corrosion Cracking in a Downcomer Expansion Joint
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Image
in Stress-Corrosion Cracking in a Downcomer Expansion Joint
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0089752
EISBN: 978-1-62708-219-8
... concentrations at the toes of the fillet welds due to poor welding technique, including shop welds made without preheat, and a brittle condition of the steel at winter temperatures. Recommendations included revised welding techniques, installation of expansion joints, and the use of steel plate rolled from fully...
Abstract
A 208 cm (82 in.) ID steel aqueduct (ASTM A572, grade 42, type 2 steel) fractured circumferentially at two points 152 m (500 ft) apart in a section above ground. A year later, another fracture occurred in a buried section 6.4 km (4 mi) away. Both pipes fractured during Jan at similar temperatures and pressures. The pipe had a 24 mm wall thickness, and the hydrostatic head was 331 m (1085 ft). The air temperature was approximately -13 deg C (9 deg F), the water temperature approximately 0.6 deg C (33 deg F), and the steel temperature approximately -4 deg C (25 deg F). The pipe had been shop-fabricated in 12 m (40 ft) lengths, then shop welded into 24 m (80 ft) lengths. Field assembly was with bell-and-spigot joints. Investigation (visual inspection and Charpy V-notch testing) supported the conclusion that brittle fracture of the aqueduct pipe was attributed to a combination of stress concentrations at the toes of the fillet welds due to poor welding technique, including shop welds made without preheat, and a brittle condition of the steel at winter temperatures. Recommendations included revised welding techniques, installation of expansion joints, and the use of steel plate rolled from fully killed ingots.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001149
EISBN: 978-1-62708-232-7
... the stiffening rings welded to the outside of the pipe and the pipe wall itself resulted in large radial and axial thermal stresses at the welds. Redundant tied down saddle supports in each segment of pipe between expansion joints restrained pipe arching due to circumferential temperature variations, producing...
Abstract
A large diameter steel pipe reinforced by stiffening rings with saddle supports was subjected to thermal cycling as the system was started up, operated, and shut down. The pipe functioned as an emission control exhaust duct from a furnace and was designed originally using lengths of rolled and welded COR-TEN steel plate butt welded together on site. The pipe sustained local buckling and cracking, then fractured during the first five months of operation. Failure was due to low cycle fatigue and fast fracture caused by differential thermal expansion stresses. Thermal lag between the stiffening rings welded to the outside of the pipe and the pipe wall itself resulted in large radial and axial thermal stresses at the welds. Redundant tied down saddle supports in each segment of pipe between expansion joints restrained pipe arching due to circumferential temperature variations, producing large axial thermal bending stresses. Thermal cycling of the system initiated fatigue cracks at the stiffener rings. When the critical crack size was reached, fast fracture occurred. The system was redesigned by eliminating the redundant restraints and by modifying the stiffener rings to permit free radial thermal breathing of the pipe.
Image
Published: 15 January 2021
Fig. 30 Braze joint failure (Example 17). (a) Schematic of failed end of expansion joint braze where an intermetallic phase formed. (b) Cross section showing the intermetallic layer (arrow). Original magnification: 15×. (c) Cracked intermetallic phase between the copper braze (top
More
Image
in Low Cycle Thermal Fatigue and Fracture of Reinforced Piping
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Image
in Failure Analysis of Welded Structures
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 22 Upright supports for the handrail/guardrail were inadvertently placed on either side of the expansion joint.
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
1