1-20 of 204 Search Results for

Expansion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046252
EISBN: 978-1-62708-229-7
... Abstract A type 321 stainless steel bellows expansion joint on a 17-cm (6 in.) OD inlet line (347 stainless) in a gas-turbine test facility cracked during operation. The line carried high-purity nitrogen gas at 1034 kPa (150 psi) with a flow rate of 5.4 to 8.2 kg/s (12 to 18 lb/s). Cracking...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001682
EISBN: 978-1-62708-229-7
... Abstract The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001398
EISBN: 978-1-62708-229-7
... metal with sodium hydroxide or nitrate solutions. Further investigations in this instance revealed that all the expansion joints where cracking had occurred were situated downstream of the de-superheaters, which were of the waterspray type. Another bellows unit fitted remote from a de-superheater...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001406
EISBN: 978-1-62708-229-7
... Abstract Caustic cracking is the term used to describe one of the forms in which stress-corrosion cracking manifests itself in carbon steels. In the present study, persistent leakage occurred after ten weeks of service from tube expansions in the steam and mud drum of a two-drum D type boiler...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0047615
EISBN: 978-1-62708-230-3
... cracking were ground and repair welded. The square corners of the fins were trimmed back with a gradual taper so that expansion strains would be more gradually transferred to the tube surface. Water chemistry was closely evaluated and monitored, especially with regard to oxygen content. Boiler tubes...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089730
EISBN: 978-1-62708-233-4
... Abstract Stainless steel liners (AISI type 321) used in bellows-type expansion joints in a duct assembly installed in a low-pressure nitrogen gas system failed in service. The duct assembly consisted of two expansion joints connected by a 32 cm (12 in.) OD pipe of ASTM A106 grade B steel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
.... The microstructure of the rotor was examined in three regions. The shaft material, the heavy section next to the gas passage and the thin edge of the rotor adjacent to the gas passage. The excessive gas temperatures were responsible for the expansion and distortion that prevented rotation of the rotor. Actual...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001105
EISBN: 978-1-62708-214-3
... Abstract A tie rod, nut, and bellows from a failed 610 mm (24 in.) diam tied universal expansion joint that carried tail gases consisting of N 2 + O 2 with slight traces of nitrogen oxides and water were examined. The materials were SA 193-B7 (AISI 4140), SA 194–214, and Incoloy 800H...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001324
EISBN: 978-1-62708-215-0
... Abstract A type 430Ti stainless steel flue gas expansion joint cracked because of caustic-induced stress-corrosion cracking. Energy-dispersive X-ray spectroscope analysis of the fracture surface deposits revealed the presence of sodium and potassium—caustics in hydroxide form. Primary fracture...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001342
EISBN: 978-1-62708-215-0
... Abstract A type 321 stainless steel downcomer expansion joint that handled process gases was found to be leaking approximately 2 to 3 weeks after installation. The expansion joint was the second such coupling placed in the plant after failure of the original bellows. The failed joint...
Image
Published: 30 August 2021
Fig. 6 Dissimilar-metal expansion joint failure. (a) Diagram showing the expansion joint braze where the intermetallic formed. (b) Cross section showing the intermetallic layer. Original magnification: 15×. (c) Cracked intermetallic between the copper braze (top) and the stainless steel weld More
Image
Published: 01 June 2019
Fig. 1 Schematic of Typical Expansion Joint Design. More
Image
Published: 01 June 2019
Fig. 3 Expansion Joint Once Removed from Service. Arrow Indicates Position of Flange When Installed. More
Image
Published: 01 June 2019
Fig. 11 Creep deformation (diametrical expansion) of the bottom manifold as a function of service time. More
Image
Published: 01 June 2019
Fig. 2 Schematic representation of the south duct showing supports and expansion joints. More
Image
Published: 01 January 2002
Fig. 48 Correlation between Charpy impact energy, lateral expansion, and percentage shear fracture for construction-grade steels. Courtesy of FTI/Anamet Laboratory More
Image
Published: 01 December 1993
Fig. 4 Partial circumferential fracture in expansion bellows. Arrows indicate partial tearing along intake end. More
Image
Published: 01 December 1993
Fig. 12 Fracture surface of expansion bellows, showing fatigue striations (arrows). More
Image
Published: 01 December 1993
Fig. 1 (a) Expansion joint section as received for analysis. (b) Secondary crack (arrows) before it was fractured open in the laboratory. More
Image
Published: 01 December 1993
Fig. 6 Typical EDS spectrum for the deposits on the expansion joint fracture surfaces. LT = 100s. More