Skip Nav Destination
Close Modal
By
Roch J. Shipley, David A. Moore, William Dobson
By
Roger Lewis, Mohanad Zalzalah, Tom Slatter
By
K.H. Subramanian, C.F. Jenkins
By
Daniel J. Benac
By
Daniel J. Benac
By
Crispin Hales, Cheryl Pattin
Search Results for
Exhaust valves
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 44
Search Results for Exhaust valves
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001182
EISBN: 978-1-62708-218-1
... Abstract A broken exhaust valve from the cylinder of a motor car had a 30-mm disk diam and 8-mm stem diam. The site of the fracture was directly where the valve cone joined the cylindrical stem. Both the cone and the stem were heavily scaled in the vicinity of the fracture; in some parts...
Abstract
A broken exhaust valve from the cylinder of a motor car had a 30-mm disk diam and 8-mm stem diam. The site of the fracture was directly where the valve cone joined the cylindrical stem. Both the cone and the stem were heavily scaled in the vicinity of the fracture; in some parts the scale has flaked off. Furthermore, the rim of the disk was badly damaged by secondary mechanical action. The core of the valve had a very fine austenitic microstructure with precipitations of numerous granular and very fine, mostly rounded carbides and tine segregation bands. A hard alloy facing was welded on to the valve seat. Fracture was a consequence of fatigue corrosion cracking, itself strongly promoted by the presence of sulphur compounds. The origin of these corrosive sulphur compounds could not be explained.
Image
Failed AISI H26 exhaust-valve punch. (a) and (b) Longitudinal splitting of ...
Available to PurchasePublished: 01 January 2002
Fig. 51 Failed AISI H26 exhaust-valve punch. (a) and (b) Longitudinal splitting of the punch caused by fatigue. Note the fracture progression starting from the top center at the punch. The punch surfaces were nitrided. (c) Top surface. 100× . (d) Extreme top surface. Note secondary crack
More
Image
Failed AISI H26 exhaust-valve punch. (a) and (b) Longitudinal splitting of ...
Available to PurchasePublished: 30 August 2021
Fig. 51 Failed AISI H26 exhaust-valve punch. (a) and (b) Longitudinal splitting of the punch caused by fatigue. Note the fracture progression starting from the top center at the punch. The punch surfaces were nitrided. (c) Top surface. Original magnification: 100×. (d) Extreme top surface
More
Image
The crack (arrow) extended at the exhaust valve seat counterbore where the ...
Available to Purchase
in Overheating of Aircraft Engine Cylinders
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 2 The crack (arrow) extended at the exhaust valve seat counterbore where the failure originated ( Fig. 1 ).
More
Book Chapter
Distortion Failure of an Automotive Valve Spring
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0092131
EISBN: 978-1-62708-234-1
... Abstract The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel...
Abstract
The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring (both of patented and drawn high-carbon steel wire) taken from another cylinder in the same engine were examined in the laboratory to determine why one had distorted and the other had not. Investigation (visual inspection, microstructure examination, and hardness testing) supported the conclusion that the engine malfunctioned because one of the exhaust-valve springs had taken a 25% set in service. Relaxation in the spring material occurred because of the combined effect of improper microstructure (proeutectoid ferrite) plus a relatively high operating temperature. Recommendations included using quenched-and-tempered steel instead of patented and cold-drawn steel or using a more expensive chromium-vanadium alloy steel instead of plain carbon steel; the chromium-vanadium steel would also need to be quenched and tempered.
Book Chapter
Failure of a Truck-Engine Valve
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046981
EISBN: 978-1-62708-218-1
... Abstract The exhaust valve of a truck engine failed after 488 h of a 1000 h laboratory endurance test. The valve was made of 21-2 valve steel in the solution treated and aged condition and was faced with Stellite 12 alloy. The failure occurred by fracture of the underhead portion of the valve...
Abstract
The exhaust valve of a truck engine failed after 488 h of a 1000 h laboratory endurance test. The valve was made of 21-2 valve steel in the solution treated and aged condition and was faced with Stellite 12 alloy. The failure occurred by fracture of the underhead portion of the valve. Analysis (visual inspection, electron probe x-ray microanalysis, hardness testing, 4.5x fractograph) supported the conclusions that failure of the valve stem occurred by fatigue as a result of a combination of a nonuniform bending load, which caused a mild stress-concentration condition, and a high operating temperature in a corrosive environment. When the microstructure near the stem surface was examined, it was apparent that carbide spheroidization had occurred. Also, there was a coarsening of the carbide network within the austenite grains. The microstructure indicated that the underhead region of the valve was heated to about 930 deg C (1700 deg F) during operation. The cause of fatigue fracture, therefore, was a combination of non-uniform bending loads and overheating. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001743
EISBN: 978-1-62708-217-4
... Abstract Cylinder fatigue can result from abnormal heating in service. Fatigue can be experienced also by piston heads, exhaust valves, and turbosupercharger housings (castings). Pistons from different engines series can sometimes fit, but because of slight design modifications, they may...
Abstract
Cylinder fatigue can result from abnormal heating in service. Fatigue can be experienced also by piston heads, exhaust valves, and turbosupercharger housings (castings). Pistons from different engines series can sometimes fit, but because of slight design modifications, they may not function properly. Circumferential cracks and fractures near the head-to- barrel junctions have occurred on numerous cylinders of reciprocating piston engines. In most instances, cracks were caused by high cyclic pressures and high temperatures resulting most probably from detonation. At times, fractures or cracks (or both) were also caused by a combination of unfavorable temperature distribution (and possibly excessive pressures around the cylinder barrel), un-nitrided internal surfaces of cylinder barrels, and inadequate thread contours, which caused high stress concentrations at the thread roots. One example of the most common type of cylinder failure is illustrated.
Book Chapter
Analysis of Distortion and Deformation
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... information being available to the designer. In such instances, the designer has to make assumptions concerning the conditions of service. Example 2: Distortion Failure of an Automotive Valve Spring The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Analysis of Distortion and Deformation
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring taken from another cylinder in the same engine (both shown in Fig...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Book Chapter
Impact Wear Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... and safety, reliability, and quality can be greatly reduced. Excessive wear from inlet and exhaust valves impacting their seating faces in automotive engines can lead to loss of cylinder pressure and ultimately engine failure. Failure of tools used for drilling rock and other media raises cost concerns...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Book Chapter
Failure Analysis of High-Level Radioactive Waste Tank Purge
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency...
Abstract
High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency particulate air filters. The failure analysis investigation concluded that nitrate-induced stress-corrosion cracking was the cause of the failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... for reduced oil consumption and exhaust emissions has led to a reduction in the amount of lubricant present in the air stream in automotive engines. This, combined with the effort to lengthen service intervals and increase engine performance, has led to an increase in the wear of inlet valves and seat inserts...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
Book Chapter
Failure Analysis and Life Assessment of Structural Components and Equipment
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... to exhaustion of life, thus leading to failure. Damage may be defined as a “progressive and cumulative change acting to degrade the structural performance of the load-bearing component or components which make up the plant” ( Ref 2 ). Life may be defined as the “period during which a component can perform its...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Book Chapter
The Disruption of a Turbo-Alternator Gearbox
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001473
EISBN: 978-1-62708-229-7
... authority supply. Installation The set comprised a back-pressure turbine of 3,000 kW capacity, running at 10,000 r.p.m. and coupled through the gearbox to an alternator running at 1,500 r.p.m. The turbine exhausted into the works' steam main and the alternator normally carried the whole...
Abstract
A combination of adverse factors was present in the disruption of a turbo-alternator gearbox. The major cause was the imposition of a gross overload far in excess of that for which the gearbox was designed. The contributory factors were a rim material (EN9 steel) that was inherently notch-sensitive and liable to rupture in a brittle manner. Discontinuities were present in the rims formed by the drain holes drilled in their abutting faces, and possibly enhanced by the stress-raising effect of microcracks in the smeared metal at their surfaces It is probable that the load reached a value in excess of the yield point within the delay time of the material so when the fracture was initiated, it was preceded by several microcracks giving rise to the propagation of a brittle fracture.
Book Chapter
Failure Prevention through Life Assessment of Structural Components and Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... be considered for repair, refurbishment, or replacement. For any component in a facility, the failure criteria should be clearly defined and established. Failure does not always involve fracture or rupture. Progressive damage of structures and components under daily operating conditions leads to exhaustion...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001813
EISBN: 978-1-62708-180-1
... most spring applications involve operating temperatures that are not far above or below room temperature, many applications require springs to operate over an appreciable temperature range. For instance, valve springs in internal-combustion engines must operate in frigid weather for start-up...
Abstract
This article discusses the common causes of failures of springs, with illustrations. Design deficiencies, material defects, processing errors or deficiencies, and unusual operating conditions are the common causes of spring failures. In most cases, these causes result in failure by fatigue. The article describes the operating conditions of springs, common failure mechanisms, and presents an examination of the failures that occur in springs.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... to exhaust gases. After approximately 80,000 km (50,000 mi) of service, broken springs were found in two engines. The trucks were used on public highways and were exposed to a variety of terrains and operating conditions, but conditions could not be characterized as extraordinary service. The springs were...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006914
EISBN: 978-1-62708-395-9
... of the flame is monitored as it travels downward ( Fig. 3 ). Fig. 3 Apparatus used in ASTM E162. 1, temperature sensor; 2, exhaust stack; 3, igniter; 4, test specimen; 5, radiant panel. Source: Ref 14 ASTM D635, “Standard Test Method for Rate of Burning and/or Extent and Time of Burning...
Abstract
A material is flammable if it is subject to easy ignition and rapidly flaming combustion. The plastics that are most widely used are the least expensive and tend to be the most flammable. This article describes the two basic approaches to improving the fire resistance of a polymeric material: modifying or substituting the basic polymer so that exposure to heat and oxygen will not produce rapid combustion, and using flame-retardant additives. It also provides an overview of the burning process and presents two flammability test methods.
Book Chapter
Design Review for Failure Analysis and Prevention
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003502
EISBN: 978-1-62708-180-1
... steel valve head with a 5 mm threaded stem had come loose. The valve head hangs down from a piston, and when the threaded connection came loose it progressively unscrewed to the point that the valve head blocked an air exhaust port, thus causing the brakes to remain partially applied. Without knowing...
Abstract
This article provides assistance to a failure analyst in broadening the initial scope of the investigation of a physical engineering failure in order to identify the root cause of a problem. The engineering design process, including task clarification, conceptual design, embodiment design, and detail design, is reviewed. The article discusses the design process at the personal and project levels but takes into consideration the effects of some higher level influences and interfaces often found to contribute to engineering failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... and industries that have experienced SCC failures include (this list is not exhaustive): Aerospace: Aluminum alloys in structural aircraft components such as landing gear and wing components, stainless steel tubing used as part of the hydraulic or fuel systems, high-strength low-alloy steel...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
1