Skip Nav Destination
Close Modal
Search Results for
Excessive internal pressure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 274 Search Results for
Excessive internal pressure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0060097
EISBN: 978-1-62708-219-8
... by metallographic examination. The fracture features were found to be characteristic of an overload failure in a ductile material. The ruptured tubes were concluded as a result of examination to have failed as a result of excessive internal pressure. The source of the excessive internal pressure was assumed...
Abstract
An eddy current survey of the copper evaporator (chiller) tubes in an absorption air-conditioning unit revealed two tubes in the evaporator bundle with indications typical of longitudinal cracks. Significant necking down and grain distortion at the fracture surfaces was revealed by metallographic examination. The fracture features were found to be characteristic of an overload failure in a ductile material. The ruptured tubes were concluded as a result of examination to have failed as a result of excessive internal pressure. The source of the excessive internal pressure was assumed to be a freeze-up of the tube side water that occurred during interruption of the tube side flow or misoperation of the unit.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001743
EISBN: 978-1-62708-217-4
... or cracks (or both) were also caused by a combination of unfavorable temperature distribution (and possibly excessive pressures around the cylinder barrel), un-nitrided internal surfaces of cylinder barrels, and inadequate thread contours, which caused high stress concentrations at the thread roots. One...
Abstract
Cylinder fatigue can result from abnormal heating in service. Fatigue can be experienced also by piston heads, exhaust valves, and turbosupercharger housings (castings). Pistons from different engines series can sometimes fit, but because of slight design modifications, they may not function properly. Circumferential cracks and fractures near the head-to- barrel junctions have occurred on numerous cylinders of reciprocating piston engines. In most instances, cracks were caused by high cyclic pressures and high temperatures resulting most probably from detonation. At times, fractures or cracks (or both) were also caused by a combination of unfavorable temperature distribution (and possibly excessive pressures around the cylinder barrel), un-nitrided internal surfaces of cylinder barrels, and inadequate thread contours, which caused high stress concentrations at the thread roots. One example of the most common type of cylinder failure is illustrated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001440
EISBN: 978-1-62708-235-8
... the regulating valve was fully open and the safety valve would also open when the temperature became high enough to soften the spring. It is doubtful, therefore, that excessive internal pressure played any part in the failure, and this is borne out by the small extent to which the crack opened. All that can...
Abstract
A portable propane container with a name-plate soldered onto it exploded in service. When the vessel was inspected afterwards, it was found to have developed a crack in the top end plate. A portion of the end plate cut out to include the midlength and one termination of the crack was examined microscopically. This revealed that the crack was associated with intergranular penetration by molten metal. The microstructure in general was indicative of a good-quality mild steel. It was evident from that solder that was responsible for the penetration and that fused brass from the hand wheel had not played any part. Tensile stress was present at the time of the failure sufficiently high to enable solder penetration to take place. The use of soft solder as a medium for attaching name-plates directly on to stressed steel parts is not recommended. It would be preferable to use a welded-on patch plate or to employ one of the high-strength, non-metallic adhesives.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001476
EISBN: 978-1-62708-229-7
... of the surface skin in the same region, is apparent. C and D portray the external and internal appearance of a tube end where appreciable melting had taken place, the debris being subsequently forced up the bore of the tube, presumably by the pressure of the air. Fig. 1 Ends of some of the damaged tubes...
Abstract
An aftercooler was of conventional design and fitted with brass tubes through which cooling-water circulated. Air at 100 psi pressure was passed over the outsides of the tubes, entering the vessel near to the upper tubeplate on one side and leaving it by a branch adjacent to the lower tubeplate on the opposite side. After a mishap, the paint had been burned off the upper half of the shell. Internally, most of the tubes were found to be twisted or bent. The casing of the pump used to circulate the cooling water was also found to be cracked after the mishap. All the evidence pointed to the probability that a fire had occurred within the vessel. Some months before the failure, one of the tubes situated towards the center of the nest developed a leak. Owing to the difficulty of inserting a replacement tube, the defective one was scaled by means of a length of screwed rod fitted with nuts and washers at each end. This assembly became loose, thereby allowing air under pressure to enter the waterside of the cooler and expel the water, leading to overheating and ultimately to the damage described.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001416
EISBN: 978-1-62708-235-8
... , and the pertinent dimensions are given in Fig. 2 . It is understood that, during operation, the cylinder was subjected to a pressure initially of 750 p.s.i., rising ultimately to 4,480 p.s.i. The appearance of the internal surface of the head and the fracture is shown in Fig. 3 . The cylinder was a steel casting...
Abstract
Hydraulic cylinders on three identical presses failed in a similar manner after approximately ten years' service life. The cylinder was a steel casting having a carbon content of the order of 0.3 to 0.4%. During machining of the internal surfaces, a sharp corner had been left at the junction of the head with the shell. From this stress raiser a fatigue crack had developed around the entire circumference of the cylinder to give a smooth crack of annular form. The use of a flat end to the cylinder, therefore, resulted in excessive stresses being introduced at the junction of the end with the cylinder.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046378
EISBN: 978-1-62708-234-1
... Abstract River water was pumped into a brine plant by a battery of vertical pumps, each operating at 3600 rpm and at a discharge pressure of 827 kPa (120 psi). The pumps were lubricated by means of controlled leakage. The 3.8 cm (1 in.) OD pump sleeves were made of an austenitic stainless steel...
Abstract
River water was pumped into a brine plant by a battery of vertical pumps, each operating at 3600 rpm and at a discharge pressure of 827 kPa (120 psi). The pumps were lubricated by means of controlled leakage. The 3.8 cm (1 in.) OD pump sleeves were made of an austenitic stainless steel and were hard faced with a fused nickel-base hardfacing alloy (approximately 58 HRC). Packing for the pumps consisted of a braided PTFE-asbestos material. After several weeks of operation, the pumps began to leak and to spray water over the platforms on which they were mounted at the edge of the river. Analysis supported the conclusions that the leaks were caused by excessive sleeve wear that resulted from the presence of fine, abrasive silt in the river water. The silt, which contained hard particles of silica, could not be filtered out of the inlet water effectively.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001243
EISBN: 978-1-62708-225-9
...., shear-fatigue fractures due to excessive surface pressure. The needles too were overstressed by compression. It seemed that the higher pressure necessary for the pressing of thicker paper accelerated the corrosion, which lead to the crack initiations of the parts and possibly also to impaired...
Abstract
A needle bearing from a filling and seating machine for milk cartons became unusable due to corrosion and fracture of a ring after only four weeks of operation of the machine in a Finnish milk packing plant. These bearings were subject to corrosion by water condensates in this type of environment because of constant temperature changes, and they normally are replaced after eight months. The bearings were lubricated by a molybdenum sulfide paste. Judging by their structure the needles probably consisted of ball bearing steel. They showed corroded initial cracks of the pitting type, i.e., shear-fatigue fractures due to excessive surface pressure. The needles too were overstressed by compression. It seemed that the higher pressure necessary for the pressing of thicker paper accelerated the corrosion, which lead to the crack initiations of the parts and possibly also to impaired lubrication. The machine manufacturer therefore switched to bearings with shells of a complex bronze.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001058
EISBN: 978-1-62708-214-3
... Abstract A white cast iron water-line plug in a fire sprinkler systems split during leak repair. Examination revealed no material flaws, fatigue, or excessive corrosion. The plug head exhibited signs of excessive loads used in attempts to force the plug farther into the pipe. The evidence...
Abstract
A white cast iron water-line plug in a fire sprinkler systems split during leak repair. Examination revealed no material flaws, fatigue, or excessive corrosion. The plug head exhibited signs of excessive loads used in attempts to force the plug farther into the pipe. The evidence obtained indicated that the failure resulted from human error.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048147
EISBN: 978-1-62708-234-1
..., which means that the part cracked in a water-base solution—either the phosphating solution or the pickling solution. Cracks can result from vigorous pickling. The sum of the tensile stress from setout (which deforms the metal beyond the yield point) and the internal hydrogen pressure exceeds...
Abstract
The power-type counterbalance spring, formed from hardened-and-tempered carbon steel strip and subsequently subjected to phosphating treatment, fractured at the two locations during fatigue testing. A rust colored dark band at the inside edge of the fracture surface was disclosed during investigation. Etch pits were revealed by the cleaned surface which were never observed on properly phosphated coating. It was interpreted that the spring had been subjected to an abnormal acid attack in pickling or phosphating which had resulted in considerable absorption of hydrogen by the metal and hence embrittlement. The part was concluded to have cracked during phosphating or excessive acid pickling before phosphating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001520
EISBN: 978-1-62708-235-8
... for a reheat treatment. For parts that cracked after pressure testing, excessive dimensional changes precluded the inclusion of a reheat treatment as a manufacturing step, and further failure was averted by carefully employing proper machining practices, avoiding abusive machining. Chromium plating...
Abstract
Two types of chromium-plated hydraulic cylinders failed by cracking on their outer surfaces. In one case, the parts had a history of cracking in the nominally unstressed, as-fabricated condition. In another, cracks were detected after the cylinders were subjected to a pressure impulse test. Both part types were made of 15-5 PH (UNS S15500) precipitation hardening stainless steel. Hydrogen embrittlement cracking was the likely cause of failure for both part types. Cracking of the as-fabricated parts was ultimately prevented by changing the manufacturing procedure to allow for a reheat treatment. For parts that cracked after pressure testing, excessive dimensional changes precluded the inclusion of a reheat treatment as a manufacturing step, and further failure was averted by carefully employing proper machining practices, avoiding abusive machining.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046418
EISBN: 978-1-62708-234-1
... Abstract Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis...
Abstract
Equipment in which an assembly of in-line cylindrical components rotated in water at 1040 rpm displayed excessive vibration after less than one hour of operation. The malfunction was traced to an aluminum alloy 6061-T6 combustion chamber that was part of the rotating assembly. Analysis (visual inspection, 100x/500x/800x micrographic examination, spectrographic analysis, and hardness testing) supported the conclusions that, as a result of improper heat treatment, the combustion-chamber material was too soft for successful use in this application. Misalignment of the combustion chamber and one or both of the mating parts resulted in eccentric rotation and the excessive vibration that caused malfunction of the assembly. Irregularities in the housing around the combustion chamber and temperature variation relating to the combustion pattern in the chamber were considered to be possible contributing factors to localization of the cavitation erosion. Recommendations included adopting inspection procedures to ensure that the specified properties of aluminum alloy 6061-T6 were obtained and that the combustion chamber and adjacent components were aligned within specified tolerances. In a similar situation, consideration should also be given to raising the pressure in the coolant in order to suppress the formation of cavitation bubbles.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047793
EISBN: 978-1-62708-217-4
... Abstract Failure of a case hardened steel shaft incorporated fuel pump in a turbine-powered aircraft resulted in damage to the aircraft. The disassembled pump was found to be dry and free of any contamination. Damage was exhibited on the pressure side of each spline tooth in the impeller...
Abstract
Failure of a case hardened steel shaft incorporated fuel pump in a turbine-powered aircraft resulted in damage to the aircraft. The disassembled pump was found to be dry and free of any contamination. Damage was exhibited on the pressure side of each spline tooth in the impeller and the relatively smooth cavities and undercutting of the flank on this side indicated that the damage was caused by an erosion or abrasion mechanism. A relatively smooth worn area was formed at the center of each tooth due to an abrasive action and an undulating outline with undercutting was observed on the damaged side. Particles of sand, paint, or plastic, fibers from the cartridge, brass, and steel were viewed in the brown residue on the filter cartridge under a low power microscope and later confirmed by chemical analysis. Large amount of iron was identified by application of a magnet. It was concluded that the combined effect of vibration and abrasive wear by sand and metal particles removed from the splines damaged the shaft. Case hardened spline teeth surface was recommended to increase resistance to wear and abrasion.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001052
EISBN: 978-1-62708-214-3
... in.) thick. The flexible hose had an inner diameter of 25 mm (1 in.) and was 180 mm (7 in.) long. Operating conditions were specified as: maximum temperature of 815 °C (1500 °F) (normal operating temperature of 205 °C or 400 °F); maximum pressure of 140 kPa (20 psi) (normal pressure of 14 to 20 kPa, or 2...
Abstract
A failure analysis was conducted to determine the cause of recurring failure of flexible bellows in an exhaust hose assembly. The bellows were made of type 321 stainless steel. Visual examination showed that cracks followed a path along the seam weld in the bellows. Most of the cracks followed a multidirectional/circular pattern, occasionally chipping off the convolutions, an indication of high-resonance fatigue-type cracking. Scanning electron fractography showed fatigue striations throughout the fracture surface. The microstructure consisted of relatively large grains and an abnormal degree of titanium-base stringers. Wall thickness was about 0.15 mm (0.006 in.) underside. It was concluded that the high vane pass frequency excited the natural vibration of the bellows to a higher resonance and cracked the bellows after a relatively short service period. The assembly was redesigned, and no further cracking occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001650
EISBN: 978-1-62708-230-3
... in the tubes to initiate stress-corrosion cracking. Use of a low-carbon grade of stainless steel such as 316L was recommended to facilitate formation of the tube without producing excessive residual stresses. It was recommended also that failed units be segregated until it can be determined if the failure...
Abstract
Several air heat exchangers failed in service in a pulp and paper operation. The tubes were made from AISI 316 stainless steel with an extruded aluminum fin mechanically bonded to the outside. Originally, the failures were blamed on poor tube to header welds. The units were sent back to the manufacturer for repair. Some of the units failed the hydrostatic test after they were repaired. Microscopic examination revealed the presence of branched transgranular cracks characteristic of stress-corrosion cracking. Only some of the tubes failed and these did so by stress-corrosion cracking. The most probable primary cause of the stress-corrosion cracking was local high residual stresses indicated by the areas of high hardness in the tubes. Low halogens in the water and airborne corrodents found normally in a pulp and paper mill were all that were required in the presence of high residual stresses in the tubes to initiate stress-corrosion cracking. Use of a low-carbon grade of stainless steel such as 316L was recommended to facilitate formation of the tube without producing excessive residual stresses. It was recommended also that failed units be segregated until it can be determined if the failure was related to operating pressure or some other unique cause.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047220
EISBN: 978-1-62708-220-4
... Abstract Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron...
Abstract
Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron with a tensile strength of 290 MPa (42 ksi) at 207 HRB. The smaller gear was sand cast from ASTM A536, grade 100-70-03, ductile iron with a tensile strength of 696 MPa (101 ksi) at 241 HRB. Analysis (metallographic examination) supported the conclusion that excessive beam loading and a lack of ductility in the gray iron gear teeth were the primary causes of fracture. During subsequent rotation, fragments of gray iron damaged the mating ductile iron gear. Recommendations included replacing the large gear material with ASTM A536, grade 100-70-03, ductile iron normalized at 925 deg C (1700 deg F), air cooled, reheated to 870 deg C (1600 deg F), and oil quenched. The larger gear should be tempered to 200 to 240 HRB, and the smaller gear to 240 to 280 HRB.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048782
EISBN: 978-1-62708-235-8
... was revealed by laboratory examination. Some misalignment of the head to the shell because of radial displacement of the shell and head centerlines was observed which was found to result in excessive clearances between the two parts and a slight difference in the thicknesses of the parts. Transgranular...
Abstract
A steam accumulator, constructed with 10.3 mm thick SA515-70 steel heads and an 8 mm thick SA455A steel shell, ruptured after about three years of service. The accumulator was used in plastic molding operations. An extensive lack of weld penetration in this the head-to-shell girth weld was revealed by laboratory examination. Some misalignment of the head to the shell because of radial displacement of the shell and head centerlines was observed which was found to result in excessive clearances between the two parts and a slight difference in the thicknesses of the parts. Transgranular fracture with occasional secondary branching was revealed. It was interpreted by stress analysis that a small amount of misalignment added to lack of penetration increased the stresses to near the tensile strength of the material. The failure was judged to be a short-cycle high-stress notch-fatigue failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048164
EISBN: 978-1-62708-217-4
... member about 25 mm thick and attached to the fuselage by a single bolt. Brinelling (plastic flow and indentation due to excessive localized contact pressure) was observed on the upper surface of the spring where the forward and rear edges of the spring contacted the support member. It was indicated...
Abstract
A flat spring for the main landing gear of a light aircraft failed after safe execution of a hard landing. The spring material was identified by chemical analysis to be 6150 steel. The fracture was found to have occurred near the end of the spring that was inserted through a support member about 25 mm thick and attached to the fuselage by a single bolt. Brinelling (plastic flow and indentation due to excessive localized contact pressure) was observed on the upper surface of the spring where the forward and rear edges of the spring contacted the support member. It was indicated by chevron marks that brittle fracture had started beneath the brinelled area at the forward edge of the upper surface of the spring. The origin of the brittle fracture was found to be a small fatigue crack that had been present for a considerable period of time before final fracture occurred. Fracture of the landing-gear spring was concluded to have been caused by a fatigue crack that resulted from excessive brinelling at the support point. Regular visual examinations to detect evidence of brinelling and wear at the support in aircraft with this configuration of landing-gear spring were recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047072
EISBN: 978-1-62708-217-4
...) and clip (bottom). Also shown are excessive penetration in the clip, excessive indentation of the shell, and the large HAZ (heat-affected zone) (arrow B) in the shell. 10x. (c) Region of crack origin. 150x. (b) and (c) Etched with Keller's reagent The bullet assembly consisted of an outer...
Abstract
Postflight inspection of a gas-turbine aircraft engine that had experienced compressor stall revealed that the engine air-intake bullet assembly had dislodged and was seated against the engine-inlet guide vanes at the 3 o'clock position. The bullet assembly consisted of an outer aerodynamic shell and an inner stiffener shell, both of 1.3 mm (0.050 in.) thick aluminum alloy 6061-T6, and four attachment clips of 1 mm (0.040 in.) thick alclad aluminum alloy 2024-T42. Each clip was joined to the outer shell by 12 spot welds and was also joined to the stiffener. Analysis (visual inspection, dye-penetrant inspection, and 10x/150x micrographs of sections etched with Keller's reagent) supports the conclusion that the outer shell of the bullet assembly separated from the stiffener because the four attachment clips fractured through the shell-to-clip spot welds. Fracture occurred by fatigue that initiated at the notch created by the intersection of the faying surfaces of the clip and shell with the spot weld nuggets. The 6061 aluminum alloy shell and stiffener were in the annealed (O) temper rather than T6, as specified. Recommendations included heat treating the shell and stiffener to the T6 temper after forming.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0045992
EISBN: 978-1-62708-225-9
... Abstract After two weeks of operation, a poppet used in a check valve to control fluid flow and with a maximum operating pressure of 24 MPa (3.5 ksi) failed during operation. Specifications required that the part be made of 1213 or 1215 rephosphorized and resulfurized steel. The poppet...
Abstract
After two weeks of operation, a poppet used in a check valve to control fluid flow and with a maximum operating pressure of 24 MPa (3.5 ksi) failed during operation. Specifications required that the part be made of 1213 or 1215 rephosphorized and resulfurized steel. The poppet was specified to be case hardened to 55 to 60 HRC, with a case depth of 0.6 to 0.9 mm (0.025 to 0.035 in.); the hardness of the mating valve seat was 40 HRC. Analysis showed that the fracture occurred through two 8 mm (0.313 in.) diam holes at the narrowest section of the poppet. The valve continued to operate after it broke, which resulted in extensive loss of metal between the holes. 80x micrograph and 4x macrograph of a 5% nital etched longitudinal section, and chemical analyses showed the poppet did fit 1213 or 1215 specs. However, hardness measurements showed surface hardness was excessive-61 to 65 HRC instead of the specified 55 to 60 HRC. Thus, the poppet failed by brittle fracture, and cracking occurred across nonmetallic inclusions. Recommendation was to redesign the valve with the poppet material changed to 4140 steel, hardened, and tempered to 50 to 55 HRC.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001031
EISBN: 978-1-62708-214-3
... caused ductility loss and grain-boundary separation. The excessive oxygen content in the liner was attributed to diffusion from an oxygen-rich environment that had resulted from nonuniform mixing of propellants. The internal oxygen embrittled the alloy and reduced its thermal conductivity, which resulted...
Abstract
Pinhole defects were found in a main combustion chamber made from NARloy-Z after an unexpectedly short time in service. Analysis indicated that the throat section of the liner had been exposed to very severe environmental conditions of high temperature and high oxygen content, which caused ductility loss and grain-boundary separation. The excessive oxygen content in the liner was attributed to diffusion from an oxygen-rich environment that had resulted from nonuniform mixing of propellants. The internal oxygen embrittled the alloy and reduced its thermal conductivity, which resulted in a higher hot-gas wall temperature and associated degradation of mechanical properties.
1