Skip Nav Destination
Close Modal
Search Results for
Engine components
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 418 Search Results for
Engine components
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001758
EISBN: 978-1-62708-241-9
... at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries. gas turbine engine components creep deformation overheating nickel-base superalloy interdendritic stress-rupture fracture stress-rupture testing stress-rupture life Cast nickel...
Abstract
This article describes the visual, fractographic, and metallographic evidence typically encountered when analyzing stress rupture of turbine airfoils. Stress-rupture fractures are generally heavily oxidized, tend to be rough in texture, and are primarily intergranular and/or interdendritic in appearance compared to smoother, transgranular fatigue type fractures. Often, gross plastic yielding is visible on a macroscopic scale. Commonly observed microstructural characteristics include creep voiding along grain boundaries and/or interdendritic regions. Internal voids can also nucleate at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001489
EISBN: 978-1-62708-217-4
... loading; the comparison is being made with the polished surfaces and the tensile specimen fracture surfaces. The inclusions in the failed retaining ring were compared with the ones in a similar component obtained from a used engine. In the case of the latter, a large number of fine and elongated (Mn, Cr...
Abstract
The cause of the fatigue failure in the retaining ring of the compressor region of an aero-engine turbine was found to be the presence of a high concentration of nonmetallic inclusions. The results of chemical analysis were used to estimate the phases present. The most frequently observed inclusions were spinel solid solutions of the type MO middot; N2O3, where M = Fe, Mn, or Mg and N = Cr or Al. The detrimental inclusions were corundum, calcium aluminates, cristobalite, and silicates. The most detrimental phases were traced on the surfaces of the specimens fractured using impact loading; the comparison is being made with the polished surfaces and the tensile specimen fracture surfaces. The inclusions in the failed retaining ring were compared with the ones in a similar component obtained from a used engine. In the case of the latter, a large number of fine and elongated (Mn, Cr, Fe)S inclusions were present along with spinels. The nondeformable, rigid oxide particles are considered more undesirable than the sulfides as far as fatigue life of the component is concerned. It has been reported that the presence of sulfides may eliminate the stresses due to oxides.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... Abstract Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... Abstract Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
... (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management...
Abstract
This article provides information on life assessment strategies and conceptually illustrates the interplay of nondestructive evaluation (NDE) and fracture mechanics in the damage tolerant approach. It presents information on probability of detection (POD) and probability of false alarm (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... Abstract Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047860
EISBN: 978-1-62708-218-1
... measure, ultrasonic inspection was used in addition to magnetic-particle inspection to detect discontinuities. Engine components Reciprocating engines Stress concentration 1040 UNS G10400 Fatigue fracture The crankshaft in a reciprocating engine had been in operation for less than one year...
Abstract
The 1040 steel crankshaft in a reciprocating engine cracked within one year of operation. The journals of the main and crankpin bearings were inspected by the magnetic-particle method. Three to six indications of 1.5 to 9.5 mm long discontinuities were observed in at least four of the main-bearing journals. A crack along the fillet, almost entirely through the web, was observed in one of the main-bearing journals. Numerous coarse segregates, identified as sulfide inclusions, were identified by macroetching the surface during metallographic examination of a section taken through the main-bearing journal at the primary crack. Fatigue cracking with low-stress high-cycle characteristics was disclosed during macroscopic examination of the crack surface. Sulfide inclusions, which acted as stress raisers, were found to be present in the region where cracking originated. As a corrective measure, ultrasonic inspection was used in addition to magnetic-particle inspection to detect discontinuities.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001756
EISBN: 978-1-62708-241-9
... Abstract The failure of HP turbine blades in a low bypass turbofan engine was analyzed to determine the root cause. Forensic and metallurgical investigations were conducted on all failed blades as well as failed downstream components. It was found that one of the blades fractured...
Abstract
The failure of HP turbine blades in a low bypass turbofan engine was analyzed to determine the root cause. Forensic and metallurgical investigations were conducted on all failed blades as well as failed downstream components. It was found that one of the blades fractured in the dovetail region, causing extensive damage throughout the turbine. Remedial measures were suggested to prevent such failures in the future.
Image
Published: 01 January 2002
Fig. 7 Damage tolerance approach to life management of cyclic-limited engine components. The safety limit or residual life is the time for the initial flaw to grow and cause failure. The size of the initial flaw, a i , is based on the inspection method or material defect distribution
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001119
EISBN: 978-1-62708-214-3
... winding. It was concluded that failure initiation was caused by residual stress-driven stress-corrosion cracking, and it was recommended that the vendor provide more effective stress relief. Engine components Residual stress Spring steels Truck engines SAE J157 Stress-corrosion cracking...
Abstract
To samples of helical compression springs were returned to the manufacturer after failing in service well short of the component design life. Spring design specifications required conformance to SAE J157, “Oil Tempered Chromium Silicon Alloy Steel Wire and Springs.” Each spring was installed in a separate heavy truck engine in an application in which spring failure can cause total engine destruction. The springs were composed of chromium-silicon steel, with a hardness ranging from 50 to 54 HRC. Chemical composition and hardness were substantially within specification. Failure initiated from the spring inside coil surface. Examination of the fracture surface using scanning electron microscopy showed no evidence of fatigue. Final fracture occurred in torsion. X-ray diffraction analysis revealed high inner-diameter residual stresses, indicating inadequate stress relief from spring winding. It was concluded that failure initiation was caused by residual stress-driven stress-corrosion cracking, and it was recommended that the vendor provide more effective stress relief.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001037
EISBN: 978-1-62708-214-3
... of the design to eliminate the raised central section were recommended. Engine components Low-carbon steel Brittle fracture Heat treating-related failures Background Six wrist pins designed especially for a high-performance six-cylinder automotive engine failed after 4800 km (3000 mi) of normal...
Abstract
Six wrist pins in a high-performance six-cylinder automotive engine failed after 4800 km (3000 mi) of normal operation. The pins were made of low-carbon steel that had been carburized both inside and outside. Two failed pins were examined. One had fractured into three pieces. The other had not fractured, but exhibited circumferential cracks on the surface of the central zone. Visual surface examination and metallographic and chemical analyses were performed on the specimens. Cracking was attributed primarily to poor heat treatment, resulting in a brittle grain-boundary network of cementite, and to a design that had a raised central section of the inner diameter whose fillets were locations of high stress concentration. Rough machining of the inner diameter and an excessively deep case also contributed to failure. A double type of heat treatment after carburizing and change of the design to eliminate the raised central section were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001657
EISBN: 978-1-62708-227-3
... detailed SEM examination of the fractured surface of a high temperature turbine engine component, the use of a surface cleaning treatment is generally necessary to remove some of the adherent oxidation and/or corrosion products formed during service. Techniques such as ultrasonic cleaning and/or repeated...
Abstract
The circumstances surrounding the in-service failure of a cast Ni-base superalloy (Alloy 713LC) second stage turbine blade and a cast and coated Co-base superalloy (MAR-M302) first stage air-cooled vane in two turbine engines used for marine application are described. An overview of a systematic approach, analyzing the nature of degeneration and failure of the failed components, utilizing conventional metallurgical techniques, is presented. The topographical features of the turbine blade fracture surface revealed a fatigue-induced crack growth pattern, where crack initiation had taken place in the blade trailing edge. An estimate of the crack-growth rate for the stage II fatigue fracture region coupled with the metallographic results helped to identify the final mode of the turbine blade failure. A detailed metallographic and fractographic examination of the air-cooled vane revealed that coating erosion in conjunction with severe hot-corrosion was responsible for crack initiation in the leading edge area.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001023
EISBN: 978-1-62708-214-3
.... The wear had been caused by incorrect machining of the shaft splines, which prevented the bevel gear nut from locating correctly against the gear. Aerospace engines Aircraft components Bevel gears Drives Engine components Jet planes Military planes Splines 16 NCD 13 Fretting wear...
Abstract
The failure of an ATAR engine accessory angle drive gear assembly caused an engine flame-out in a Mirage III aircraft of the Royal Australian Air Force (RAAF) during a landing. Stripping of the engine revealed that the bevel gear locating splines (16 NCD 13) had failed. Visual and low-power microscope examination of the spline of the shaft showed evidence of fretting wear debris; similar wear was observed on the splines of the mating bevel gear. It was concluded that the splines had failed by severe fretting wear. Fretting damage was also observed on the shaft face adjacent to the splines and on the bevel gear abutment shoulder. Additional tests included a metrological inspection of the shaft, bevel gear and support ring; metallographic examination of a section from the shaft; chemical analysis of the shaft material (16 NCD 13); and hardness testing of a sample of the yoke material. The wear had been caused by incorrect machining of the shaft splines, which prevented the bevel gear nut from locating correctly against the gear.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... Abstract Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047835
EISBN: 978-1-62708-217-4
... electroetched marking of the articulated rods was discontinued as a corrective measure. Aerospace engines Engine components Identification Marking 4337 UNS G43370 Fatigue fracture Surface treatment related failures The articulated rod in an aircraft engine fractured after being in operation...
Abstract
An articulated rod (made from 4337 steel (AMS 6412) forging, quenched and tempered to 36 to 40 HRC) used in an overhauled aircraft engine was fractured after being in operation for 138 h. Visual examination revealed that the rod was broken into two pieces 6.4 cm from the center of the piston-pin-bushing bore. The fracture was nucleated at an electroetched numeral 5 on one of the flange surfaces. A notch, caused by arc erosion during electroetching, was revealed by metallographic examination of a polished-and-etched section through the fracture origin. A remelted zone and a layer of untempered martensite constituted the microstructure of the metal at the origin. Small cracks, caused by the high temperatures developed during electro-etching, were observed in the remelted area. It was concluded that fatigue fracture of the rod was caused by the notch resulting from electroetching and thus electroetched marking of the articulated rods was discontinued as a corrective measure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006815
EISBN: 978-1-62708-329-4
... Abstract The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause...
Abstract
The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause of failure. Next, the article discusses the steps involved in the engineering design process and explains the importance of considering the engineering design process. Information on failure modes and effects analysis is also provided. The article ends with a discussion on the consequence of management actions on failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001722
EISBN: 978-1-62708-236-5
... of such deposits on the endurance of parts so treated. The following extracts from a Ministry of Supply Specification dealing with chromium-plating of engineering components may be of interest to those readers who do not happen to be acquainted with it. The specification in question is entitled: “Hard Chromium...
Abstract
The crankshaft of a 37.5-hp, 3-cylinder oil engine was examined. The engine had been dismantled for the purpose of a general overhaul and in the course of this work the crankpins were chromium-plated before regrinding. The engine was returned to service and after running for 290 h the crankshaft broke at the junction of the No. 3 crankpin and the crankweb nearest to the flywheel. A typical fatigue crack had originated at a number of points in the root of the fillet to the web. In its early stages it ran slightly into the web but turned back to the pin when it encountered the oil hole. The shaft had been made from a heat-treated alloy steel. The thickness of the plating was approximately 0.025 in. and numerous cracks were visible in it, several of which had given rise to cracks in the steel below. The primary cause of the crankshaft failure was the plating of the crankpins. The presence of the grooves alone would result in considerable intensification of stress in zones which are normally highly stressed, while the crazy cracking introduced a multiplicity of stress-raisers of a type almost ideal from the point of view of initiating fatigue cracks.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001360
EISBN: 978-1-62708-215-0
..., fatigue crack propagation, and final rapid fracture in a ductile manner The fatigue crack originated near a rivet hole. Automotive components Engine components Trucks 301 UNS S30100 Fatigue fracture Background A blade from the engine cooling fan of a pickup truck fractured unexpectedly...
Abstract
A blade from the engine cooling fan of a pickup truck fractured unexpectedly. The blade was made from type 301 stainless steel in the extra full hard tempered condition with a hardness of 47 HRC. Failure analysis indicated that the blade fractured in three modes: crack initiation, fatigue crack propagation, and final rapid fracture in a ductile manner The fatigue crack originated near a rivet hole.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048169
EISBN: 978-1-62708-233-4
... engines Design Engine components Service life 17-7 PH UNS S17700 Fatigue fracture The part shown in the “original design” portion of Fig. 1 was a valve-seat retainer spring from a fuel control on an aircraft engine. This spring was found to be broken during disassembly of the fuel control...
Abstract
A valve-seat retainer spring (made of 0.23 mm thick 17-7 PH stainless steel) from a fuel control on an aircraft engine was found to be broken after 3980 h of service. The two inner tabs were found to be broken off. The part was revealed to be in relative rotation against its contacting member by the radial wear marks on the convex surface. Beach marks indicating that fatigue fracture had been initiated at the convex surface of the washer and had propagated across to the concave surface were revealed by examination of the fractured surfaces of the washer. The cracks were revealed to have originated in the 0.38-mm radius fillet between the tab and the body of the washer. It was interpreted from the analysis of the compound fracture that it was composed of fatigue fractures caused by the formed tab being loaded so as to compress the spring along the axis of its centerline and produce torsional vibrations. It was concluded that the two inner tabs had broken in fatigue as the result of cyclic loading that compressed and torsionally vibrated the spring. The fillets were replaced with slots to minimize stress concentration at the corners as a corrective measure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047590
EISBN: 978-1-62708-217-4
... induced by severe vibration in service. Additional tube clamps were provided to damp the critical vibrational stresses. No further fuel-line fractures were encountered. Engine components Heat affected zone Tubes Vibration 347 UNS S34700 Fatigue fracture Joining-related failures A weld...
Abstract
A weld in a fuel-line tube broke after 159 h of engine testing. The 6.4-mm (0.25-in.) OD x 0.7-mm (0.028-in.) wall thickness tube and the end adapters were all of type 347 stainless steel. The butt joints between tube and end adapters were made by automated gas tungsten arc (orbital arc) welding. It was found that the tube had failed in the HAZ. Examination of a plastic replica of the fracture surface in a transmission electron microscope established that the crack origin was at the outer surface of the tube. The crack growth was by fatigue; closely spaced fatigue striations were found near the origin, and more widely spaced striations near the inner surface. The quality of the weld and the chemical composition of the tube both conformed to the specifications. However, the fuel-line assembly had vibrated excessively in service. The fuel-line fracture was caused by fatigue induced by severe vibration in service. Additional tube clamps were provided to damp the critical vibrational stresses. No further fuel-line fractures were encountered.
1