1-20 of 211

Search Results for Energy dispersive spectroscopy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 26 Results of the in situ energy-dispersive spectroscopy analysis of the deposits present in the fracture terminus areas of the laboratory opened crack sample More
Image
Published: 01 January 2002
Fig. 9 Energy-dispersive spectroscopy corresponding to areas of Fig. 8 . Courtesy of Mohan Chaudhari, Columbus Metallurgical Services More
Image
Published: 01 January 2002
Fig. 21 Energy-dispersive spectroscopy analysis of deposit in a crack in a pipe from a petrochemical plant More
Image
Published: 01 January 2002
Fig. 46 Energy-dispersive spectroscopy x-ray spectrum from a shiny metallic particle in a secondary crack, as shown in Fig. 42 More
Image
Published: 01 January 2002
Fig. 71 Energy-dispersive spectroscopy spectrum indicating presence of slag More
Image
Published: 01 June 2019
Fig. 4 Energy-dispersive spectroscopy of the ductile cast iron More
Image
Published: 01 June 2019
Fig. 8 Energy-dispersive spectroscopy of the discolored surface of Fig. 7 More
Image
Published: 01 June 2019
Fig. 3 Energy-dispersive spectroscopy corresponding to areas of Fig. 2 . Courtesy of Mohan Chaudhari, Columbus Metallurgical Services More
Image
Published: 15 January 2021
Fig. 21 Energy-dispersive spectroscopy analysis of deposit in a crack in a pipe from a petrochemical plant More
Image
Published: 15 January 2021
Fig. 46 Energy-dispersive spectroscopy x-ray spectrum from a shiny metallic particle in a secondary crack, as shown in Fig. 42 More
Image
Published: 30 August 2021
Fig. 106 Representative energy-dispersive x-ray spectroscopy spectrum of spherical inclusions analyzed from Fig. 105 More
Image
Published: 30 August 2021
Fig. 108 Energy-dispersive x-ray spectroscopy spectrum from an area of the defect shown in Fig. 107 More
Image
Published: 15 May 2022
Fig. 5 Typical energy-dispersive x-ray spectroscopy spectrum showing absorption features indicative of unique elements and the quantitation of those elements. cps, counts per second More
Image
Published: 15 January 2021
Fig. 21 Energy-dispersive x-ray spectroscopy spectrum of a bungee cord fractured surface showing fillers to be calcium carbonate type More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001072
EISBN: 978-1-62708-214-3
... to the outer diameter. The entire impeller surface was tested by the dry magnetic particle method. Visual and microstructural examinations revealed intergranular cracking. Energy-dispersive spectroscopy of corrosion products contained in the cracks disclosed the presence of chlorine and sulfur The failure...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001293
EISBN: 978-1-62708-215-0
... of the fracture surface failed in an intergranular fashion. Energy dispersive spectroscopy determined that deposits of sand, corrosion and salts were found within the pits. The failure started by hydrogen charging as a result of corrosion, and was aggravated by the stress concentration effects of pitting...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048751
EISBN: 978-1-62708-235-8
... to the weld seam, were revealed by metallographic examination (hot shortness). It was indicated by energy-dispersive spectroscopy that type 316 electrode was not used for the root pass and instead a nickel-copper alloy electrode was employed. It was thus concluded that cracking was caused due to the use...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0091757
EISBN: 978-1-62708-232-7
... to 69 kPa (5 to 10 psi), and 125 deg C (260 deg F). The kiln developed perforations within eight months of operation. Investigation (visual inspection, metallurgical analysis, energy-dispersive spectroscopy, and 44X micrographs) supported the conclusion that the sulfur and chlorine in the charcoal...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion...