Skip Nav Destination
Close Modal
Search Results for
Digesters
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 32
Search Results for Digesters
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001562
EISBN: 978-1-62708-230-3
... Abstract The Pandia digester is a long cylindrical vessel which uses alkaline sulfite liquor to cook sawdust for pulping. The inlet cone was fabricated from AISI 304L stainless steel with E308 welds. Typical liquor concentration was approximately 80% NaOH, 20% Na2SO3 with chloride...
Abstract
The Pandia digester is a long cylindrical vessel which uses alkaline sulfite liquor to cook sawdust for pulping. The inlet cone was fabricated from AISI 304L stainless steel with E308 welds. Typical liquor concentration was approximately 80% NaOH, 20% Na2SO3 with chloride concentrations at 2 grams per liter. The operating pressures in the inlet cone were up to 1.2 MN/sq m (170 psig). The inlet cone had developed leaks within a year of service. Liquid penetrant inspection showed significant through-wall cracking near the fillet welds joining the bottom flange and side wall and the butt welds. Metallographic specimens were prepared from the welds to examine the microstructure and nature of the cracks. The cooking liquor at the inlet cone contained over ppm chlorides and was aggressive to 304 stainless steel. The cracking was identified as chloride-induced SCC. The inlet cone was replaced with an Inconel clad carbon steel inlet cone to combat the SCC.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001049
EISBN: 978-1-62708-214-3
... Abstract Routine inspections of a carbon steel wood pulp digester revealed a sharply increasing number of cracks in the overlay metal on the internal surface of the digester after 1 and 2 years of service. The weld overlay was composed of type 309 stainless steel on the top fourth...
Abstract
Routine inspections of a carbon steel wood pulp digester revealed a sharply increasing number of cracks in the overlay metal on the internal surface of the digester after 1 and 2 years of service. The weld overlay was composed of type 309 stainless steel on the top fourth of the digester and of a proprietary high-nickel material on the bottom three-fourths. Examination revealed three distinct modes of deterioration. General corrosion was linked to the use of unspecified overlay metal. Cracking resulted during installation from the use of a material susceptible to hot cracking. Deep corrosion fissures then developed at hot crack sites as a result of crevice corrosion. Use of the appropriate overlay material was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001563
EISBN: 978-1-62708-230-3
... ). Limited intergranular corrosion was found at the erosion/corrosion pits. The microstructure also had carbide precipitation at the grain boundaries, hence, susceptibility to intergranular corrosion ( Fig. 4 ). Fig. 1 Inconel clad carbon steel inlet cone from the Pandia digester. Fig. 2...
Abstract
An Inconel-clad SA-212 Grade B carbon steel inlet cone with an anticipated 25-year service life failed in a localized area after only seven years of service. The failure was caused by an erosion/corrosion leak at the midsection. Erosion/corrosion was confined to a localized area directly facing the steam inlet nozzle. The Inconel cladding was intact elsewhere in the inlet cone with insignificant corrosion-related degradation. In the absence of the conditions that led to erosion/corrosion, the Inconel clad carbon steel was considered adequate for the intended service. As a corrective measure, a solid Inconel liner was recommended in the areas of direct steam impingement.
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 68 Sketch of a batch digester
More
Image
in Corrosion and Cracking of the Internal Surfaces of a Black Liquor Digester
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 1 Schematic of batch digester.
More
Image
in Corrosion and Cracking of the Internal Surfaces of a Black Liquor Digester
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 2 Sections from the lower digester wall.
More
Image
in Failure of an Inconel Clad Carbon Steel Inlet Cone of the Pandia Digester
> ASM Failure Analysis Case Histories: Pulp and Paper Processing Equipment
Published: 01 June 2019
Fig. 1 Inconel clad carbon steel inlet cone from the Pandia digester.
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001061
EISBN: 978-1-62708-214-3
... Abstract Schedule 80 low-carbon steel pipes used to transfer kraft liquor in a Kamyr continuous pulp digester failed within 18 months after installation. Visual and metallographic examinations established that the cracking initiated on the internal surfaces of the equalizer pipes in the welds...
Abstract
Schedule 80 low-carbon steel pipes used to transfer kraft liquor in a Kamyr continuous pulp digester failed within 18 months after installation. Visual and metallographic examinations established that the cracking initiated on the internal surfaces of the equalizer pipes in the welds and heat-affected zones (HAZs). Fracture/crack morphology was brittle and primarily intergranular and deposits at crack tips were primarily iron oxides with significant amounts of sodium compounds. On these bases, the cracking was characterized as intergranular stress-corrosion cracking (IGSCC). Corrosion-related deterioration was not found, indicating that the material was generally suitable for the intended service. High residual tensile stresses in the welds and HAZS, resulting from field welding under highly constrained conditions using inadequate weld procedures, were the most probable cause of the failures. Minimizing residual stresses through use of welding procedures that include appropriate preweld and interpass temperatures and postweld stress relief heat treatment at 650 deg C (1200 deg F) was recommended to prevent further failures.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001069
EISBN: 978-1-62708-214-3
... Abstract A segment of a stainless steel clad bottom cone of an acid sulfite pulping batch digester failed from severe corrosion loss. The digester was fabricated of 19 mm ( 3 4 in.) low-carbon steel with 3.8 mm (0.15 in.) type 317L stainless steel cladding. The manufacturing method...
Abstract
A segment of a stainless steel clad bottom cone of an acid sulfite pulping batch digester failed from severe corrosion loss. The digester was fabricated of 19 mm ( 3 4 in.) low-carbon steel with 3.8 mm (0.15 in.) type 317L stainless steel cladding. The manufacturing method for the cladding was unknown. Visual and metallographic analyses indicated that the failure was from transgranular stress-corrosion cracking (TGSCC), which caused extensive cracking and spalling of the cladding and was localized in a segment of the bottom cone. The remainder of the digester cladding was unaffected. The TGSCC was attributed to high, locked-in residual stresses from the cladding process. It was recommended that the bottom cone replacement segment be stress relieved prior to installation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0091622
EISBN: 978-1-62708-230-3
... Abstract A CF-8M (cast type 316) neck liner or manway was removed from the top of a digester vessel. Repeated attempts to repair the part in the field during its life cycle of many years had failed to keep the unit from leaking. The casting was a CF-8M modified with the molybdenum level...
Abstract
A CF-8M (cast type 316) neck liner or manway was removed from the top of a digester vessel. Repeated attempts to repair the part in the field during its life cycle of many years had failed to keep the unit from leaking. The casting was a CF-8M modified with the molybdenum level at the top end of the range. The plate was standard 317L material. The filler metal was type 316, although marginal in molybdenum content. Investigation (visual inspection, chemical analysis, micrographs, and metallographic examination) supported the conclusion that the damage to the neck liner was due to Cl-SCC in an area of debris buildup. It appeared the original casting suffered SCC in a low-oxygen area high in chlorides from repeated wet/dry cycles where there was a buildup of debris. Recommendations included redesigning the neck liner to eliminate the abrupt change where there was debris buildup. If redesign was impossible, an alloy more resistant to Cl-SCC, such as a duplex stainless steel or a high-molybdenum (4 to 6%) austenitic stainless steel, should be used.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001564
EISBN: 978-1-62708-230-3
... Abstract An 8 in. diam stainless steel black liquor feed pipe to a carbon steel digester had failed within one year of service. The material was type 316 molybdenum-containing austenitic stainless steel. The service environment was alkaline black liquor at 175 deg C (350 deg F). The pipe had...
Abstract
An 8 in. diam stainless steel black liquor feed pipe to a carbon steel digester had failed within one year of service. The material was type 316 molybdenum-containing austenitic stainless steel. The service environment was alkaline black liquor at 175 deg C (350 deg F). The pipe had developed cracks on the inside surface coincident with an external support gusset. The cracks initiated at wide corrosion grooves. The early stages were corrosion-assisted fatigue cracks. The cracks initiated at the corrosion grooves and propagated as transgranular SCC with characteristic branching. Evaluation indicated the cracks were localized in an area of high cyclic stresses as a consequence of geometrical constraints on the piping and unsupported cantilever loads. No cracks were found elsewhere in the pipe. In the absence of highly localized service stresses (exceeding yield strength of the material), the corrosion grooving and subsequent SCC would not have occurred in this service environment. The pipe support system was modified with additional gussets to reduce the magnitude of cyclic stresses at the critical areas. The modification was apparently successful.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0089682
EISBN: 978-1-62708-230-3
... Abstract A neck fitting (cast equivalent of AISI type 317) exhibited extreme corrosion with large, deeply pitted areas. It had been in service in a sulfite digester at 140 deg C (285 deg F) and 689 kPa (100 psi). The liquor was calcium bisulfite, and chloride content was reported to be low...
Abstract
A neck fitting (cast equivalent of AISI type 317) exhibited extreme corrosion with large, deeply pitted areas. It had been in service in a sulfite digester at 140 deg C (285 deg F) and 689 kPa (100 psi). The liquor was calcium bisulfite, and chloride content was reported to be low. Investigation (visual inspection, and micrographs of sections with electrolytic etching using 10 N KOH and then again after re-polishing and etching with Murakami's reagent) supported the conclusions that the casting never received a proper solution anneal. Recommendations included possible corrosion-screening tests in accordance with ASTM A 262 to ensure adequate corrosion resistance.
Image
Published: 01 January 2002
Fig. 28 Stress-corrosion cracking liner of cast neck liner. (a) Illustration of neck liner removed from a pulp digester vessel. Note the abrupt change in cross section that led to a caked-on buildup. Dimensions given in millimeters (inches). (b) Extensive SCC into the 317 plate on the inner
More
Image
in Stress-Corrosion Cracking in a Neck Liner
> ASM Failure Analysis Case Histories: Pulp and Paper Processing Equipment
Published: 01 June 2019
Fig. 1 Stress-corrosion cracking liner of cast neck liner. (a) Illustration of neck liner removed from a pulp digester vessel. Note the abrupt change in cross section that led to a caked-on buildup. Dimensions given in millimeters (inches). (b) Extensive SCC into the 317 plate on the inner
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
..., ICP-OES uses the optical emission principles of exited atoms to determine the elemental concentration in samples. However, for ICP-OES, solid samples are dissolved (digested) in an appropriate solvent (typically acid) to produce a solution for analysis. The resulting sample solution (or an original...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0090639
EISBN: 978-1-62708-227-3
... Berkley, Robert Drake, and Fred Tonch for their helpful insight and careful review of the ideas presented in the source article. References References 1. Zhang X.J. and Gaudett M. , Steel Failure Analysis Results in Stronger Deck Sockets , Wavelengths—An Employee Digest of Events...
Abstract
Cracks initiating from the tip of the cloverleaf pattern in steel cargo tiedown sockets were observed by the builder following installation aboard several cargo vessels in various stages of construction. Testing of finite element models and measurements performed in the field on cargo ships with the cracking problem supported the conclusion that the failure was caused by overload. Additional testing showed that the overload failure and the transition from ductile to brittle fracture were facilitated by a combination of high brittleness due to flame cutting, increased hardness due to the cold-working coining process, and high residual stresses created by welding. Recommendations included the removal of the brittle, carbon-rich transformed martensite layer introduced by flame cutting and the application of a localized stress-relief heat treatment process. X-ray diffraction residual-stress measurements were then performed on heat treated tiedown sockets to verify the effectiveness of the localized heat treatment process applied.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001311
EISBN: 978-1-62708-215-0
...). heat-exchanger tubes used in processing black liquor in a kraft paper mill failed prematurely. Applications In the heat-exchange saturated steam is used to heat Kraft black liquor as it circulates out of and back into a digester ( Fig. 1 ). The maximum steam temperature is about 190 °C (375 °F...
Abstract
Several nickel-base superalloy (UNS N06600) welded heat-exchanger tubes used in processing black liquor in a kraft paper mill failed prematurely. Leaking occurred through the tube walls at levels near the bottom tube sheet. The tubes had been installed as replacements for type 304 stainless steel tubes. Visual and stereoscopic examination revealed three types of corrosion on the inside surfaces of the tubes: uniform attack, deeper localized corrosive attack, and accelerated uniform attack. Metallographic analysis indicated that pronounced dissimilar-metal corrosion had occurred in the base metal immediately adjacent to the weld seam. The corrosion was attributed to exposure to nitric acid cleaning solution and was accelerated by galvanic differences between the tubes and a stainless steel tube sheet and between the base metal of the tubes and their dendritic weld seams. A change to type 304 stainless steel tubing made without dendritic weld seams was recommended.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... should be prepared according to the technique being utilized. A flat and polished sample is ideal for XRF. For OES, a flat but somewhat rough sample is most suitable, such as a sample turned on a lathe with a roughing bit or ground with 60-grit grinding paper. ICP-OES requires chips for acid digestion...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
1