Skip Nav Destination
Close Modal
Search Results for
D2
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 26
Search Results for D2
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001121
EISBN: 978-1-62708-214-3
... Abstract An AISI D2 tool steel insert from a forming die used in the manufacture of automotive components failed prematurely during production. Results of various analyses and simulation tests indicated fatigue failure resulting from improper heat treatment. The fatigue fracture originated...
Abstract
An AISI D2 tool steel insert from a forming die used in the manufacture of automotive components failed prematurely during production. Results of various analyses and simulation tests indicated fatigue failure resulting from improper heat treatment. The fatigue fracture originated because of a highly stressed condition produced by a sharp corner combined with low toughness from ineffective tempering. It was recommended that 25 other inserts that belonged to the same die be double tempered.
Image
Published: 01 January 2002
Fig. 33 Light micrograph of a melted region found on an AISI D2 powder metallurgy die after heat treatment. Specimen etched with Marble's reagent
More
Image
Published: 01 January 2002
Fig. 34 Light micrograph of a grossly overaustenitized AISI D2 draw die insert. Specimen etched with Marble's reagent
More
Image
Published: 01 January 2002
Fig. 31 AISI D2 powder metallurgy die component that melted and deformed because of flame impingement during heat treatment. (a) End view. 4.5×. (b) Microstructure in the affected region. Etched with Marble's reagent. 150×
More
Image
Published: 01 January 2002
Fig. 41(a) The flange edge of a roll made from AISI D2 tool steel that chipped off during its initial use. Failure was due to poor carbide distribution and morphology, which embrittled the material. See also Fig. 41(b) .
More
Image
Published: 01 January 2002
Fig. 7 A slitter knife of D2 tool steel exhibits characteristic grinding cracks (both parallel and network types) when etched in cold dilute nitric acid.
More
Image
Published: 15 January 2021
Fig. 42 Light micrograph of a melted region found on an AISI D2 powder metallurgy die after heat treatment. Specimen etched with Marble’s reagent
More
Image
Published: 15 January 2021
Fig. 43 Light micrograph of a grossly overaustenitized AISI D2 draw die insert. Specimen etched with Marble’s reagent
More
Image
Published: 15 January 2021
Fig. 9 Fracture in a thin medical device manufactured from type D2 tool steel. (a) View showing a fractured massive carbide and associated matrix crack. Scanning electron micrograph. Original magnification: 1187×. (b) Cross section through a cracked region in a similar part showing brittle
More
Image
Published: 30 August 2021
Fig. 31 AISI D2 powder metallurgy die component that melted and deformed because of flame impingement during heat treatment. (a) End view. Original magnification: 4.5×. (b) Microstructure in the affected region. Etched with Marble’s reagent. Original magnification: 150×
More
Image
Published: 30 August 2021
Fig. 41 (a) Flange edge of a roll made from AISI D2 tool steel that chipped off during its initial use. Failure was due to poor carbide distribution and morphology, which embrittled the material. (b) Micrograph showing the poor carbide distribution and morphology in the roll. The grain size
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001783
EISBN: 978-1-62708-241-9
... provides information on not only better materials, but also design changes intended to reduce wear and increase service life. bushing wear relative hardness aluminum bronze distortion microstructural analysis coefficient of friction AMPCO 45 (aluminum bronze) UNS 63000 D2 (high carbon, high...
Abstract
An aluminum bronze bushing that serves as a guide in a crimping machine began to fail after 50,000 cycles or approximately two weeks of operation. Until then, typical run times had been on the order of months. Although the bushings are replaceable and relatively inexpensive, the cost of downtime adds up quickly while operators troubleshoot and swap out worn components. Initially, the quality of the bushings came into question, but after a detailed analysis of the entire crimping mechanism, several other issues emerged that were not previously considered. As a result, the investigation provides information on not only better materials, but also design changes intended to reduce wear and increase service life.
Image
Published: 01 January 2002
Fig. 10 Grinding cracks caused by failure to temper a part. (a) Two dies made from AISI D2 tool steel that cracked after finish grinding (cracks accentuated with magnetic particles). (b) Macroetching (10% aqueous nitric acid) of the end faces revealed grinding scorch. These dies were
More
Image
Published: 30 August 2021
Fig. 10 Grinding cracks caused by failure to temper a part. (a) Two dies made from AISI D2 tool steel that cracked after finish grinding (cracks accentuated with magnetic particles). (b) Macroetching (10% aqueous nitric acid) of the end faces revealed grinding scorch. These dies were
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001043
EISBN: 978-1-62708-214-3
... analysis resembled the specification for type D2 tool steel rather than for an austenitic stainless steel, thus explaining its extremely brittle nature. Mechanical Properties Hardness Hardness tests of the surface and of a micromounted cross section were conducted with a Rockwell hardness tester...
Abstract
A 76 mm (3 in.) type 304 stainless steel tube that was used as a heat shield and water nozzle support in a hydrogen gas plant quench pot failed in a brittle manner. Visual examination of a sample from the failed tube showed that one lip of the section was eroded from service failure, whereas the opposite side exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide formations in a martensite matrix and outlining of prior-austenite grains by a network of fine, white lines. These features indicated that the material had been transformed by carburization by the impinging gas. The outer surface exhibited a heavy scale deposit and numerous cracks that originated at the surface of the tube. The cracks were covered with scale, indicating that thermal fatigue (heat cracking) had occurred. Chemical analysis confirmed that the original material was type 304 stainless steel that had been through-carburized by the formation of an endothermic gas mixture. It was recommended that plant startup and shutdown procedures be modified to reduce or eliminate the presence of the carburizing gas mixture.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
... unstable retained austenite. Figure 10 shows an example of grinding cracks due to failure to temper the part. Two AISI D2 tool steel dies, which measured 57 × 60 × 29 mm or 51 mm thick (2 1 4 × 2 3 8 × 1 1 8 in. or 2 in. thick), were observed to be cracked after finish...
Abstract
This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps, unconsolidated interiors, and carbide segregation and poor carbide morphology are reviewed with illustrations.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
... to failure to temper the part. Two AISI D2 tool steel dies, which measured 57 by 60 by 29 mm or 51 mm thick (2¼ by 2⅜ by 1⅛ in. or 2 in. thick), were observed to be cracked after finish grinding. The cracks are emphasized with magnetic particles. Macroetching of the surfaces revealed the classic scorch...
Abstract
This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0009222
EISBN: 978-1-62708-180-1
... show characteristic patterns that aid in their identification ( Fig. 7 ). Light cracks tend to form in parallel lines transverse to the direction of grinding. Heavy cracks assume a network pattern. Fig. 7 A slitter knife of D2 tool steel exhibits characteristic grinding cracks (both parallel...
Abstract
This article describes the six fundamental factors that decide a tool's performance. These are mechanical design, grade of tool steel, machining procedure, heat treatment, grinding, and handling. A deficiency in any one of the factors can lead to a tool and die failure. The article presents a seven-step procedure to be followed when looking for the reason for a failure. A review of the results of the seven-point investigation may lead directly to the source of failure or narrow the field of investigation to permit the use of special tests.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
1