Skip Nav Destination
Close Modal
By
William R. Warke
By
Ockert J. Van Der Schijff, Noah Budiansky, Ronald M. Latanision
By
Thomas J. Moore, James E. Cairelli, Kaveh Khalili
By
S. L. West, D. Z. Nelson, M. R. Louthan, Jr.
By
A. Hudgins, C. Roepke, B. James, B. Kondori, B. Whitley
By
Walter L. Bradley
By
C.N. McCowan, T.A. Siewert
By
Luis A. Ganhao, Jorge J. Perdomo, James McVay, Antonio Seijas
Search Results for
Cylinder pipe
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 75
Search Results for Cylinder pipe
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failure of a Jack Cylinder
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0090988
EISBN: 978-1-62708-236-5
... Abstract A jack cylinder split open during simulated service testing. The intended internal test pressurization was reportedly analogous to typical service. The material and mechanical properties of the cylinder pipe were unknown, although subsequent testing showed that the pipe satisfied...
Abstract
A jack cylinder split open during simulated service testing. The intended internal test pressurization was reportedly analogous to typical service. The material and mechanical properties of the cylinder pipe were unknown, although subsequent testing showed that the pipe satisfied the requirements for a grade 1045 medium-carbon, plain carbon steel. Investigation (visual inspection, chemical analysis, 2% nital etched 119x images, and tension testing) supported the conclusion that the cylinder pipe burst in a mixed brittle-ductile manner due to overpressurization. It is likely that the bearing strength of the pipe was slightly compromised by a low-strength layer of decarburization. Recommendations included evaluating the testing procedure for the possibility of inadvertent overpressurization and analyzing successfully tested cylinders to identify changes in material, and perhaps heat treatment, that may have contributed to this failure.
Image
Evaporator portion of a finned cylinder heat pipe, showing the crack locati...
Available to PurchasePublished: 01 December 1992
Fig. 1 Evaporator portion of a finned cylinder heat pipe, showing the crack location where the sodium working fluid leaked to the atmosphere. Locations and viewing directions for metallographic examination are shown in (b).
More
Book Chapter
Failure of a Large Gas Cylinder Due to Internal Laminar Defects
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001446
EISBN: 978-1-62708-234-1
..., probably originating as a secondary pipe in the ingot which was subsequently displaced and forced into the wall of the vessel during the piercing operation. Gas cylinders Radiography Ultrasonic testing Low-alloy steel Transgranular fracture Metalworking-related failures The presence...
Abstract
A 2 ft. diam 20 ft. long cylinder with a wall thickness of 1 in. used for the transportation of a compressed gas failed by cracking. The cylinder was forged in a low ally steel. The working pressure was 3000 psi and it had been in service for about seven years. A longitudinal crack, about 2 in. long, developed at the approximate mid-length of the vessel, and allowed slow de-pressurization. Subsequent examination by radiography and ultrasonic means indicated the crack was associated with an irregularly shaped, laminar type of defect located within the wall of the vessel. It was concluded that failure of this vessel resulted from the development of a radial crack orientated in the axial direction. This appeared to have originated on the bore surface in a region where the laminar defect closely approached this surface. The defect was introduced during the manufacture of the vessel, probably originating as a secondary pipe in the ingot which was subsequently displaced and forced into the wall of the vessel during the piercing operation.
Book Chapter
Failure of an Oil Engine Connecting Rod Arising from a Deposit of Weld Metal
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001434
EISBN: 978-1-62708-236-5
... Abstract One of the connecting rods of a vertical, four-cylinder engine with a cylinder diameter of 5 in. failed by fatigue cracking just below the gudgeon-pin boss. Failure took place in line with the lower edge of a deposit of weld metal. The fracture surface was smooth, conchoidal...
Abstract
One of the connecting rods of a vertical, four-cylinder engine with a cylinder diameter of 5 in. failed by fatigue cracking just below the gudgeon-pin boss. Failure took place in line with the lower edge of a deposit of weld metal. The fracture surface was smooth, conchoidal, and characteristic of that resulting from fatigue. The origin of the major crack was associated with a crescent-shaped area immediately below the weld deposit. This showed brittle fracture characteristics and appeared to be an initial crack that occurred at the time of welding and from which the fatigue crack subsequently developed. The rod was made from a medium carbon or low-alloy steel in the hardened and fully tempered condition. Evidence indicated that, following modification to the oil feed system, the rod that broke was returned to service with fine cracks present immediately below the weld deposit, which served as the starting points of the fatigue cracks. Following this accident, the remaining three rods (which had been modified in a similar manner) were replaced as a precautionary measure.
Book Chapter
Use of Failure Analysis Results in the Improvement of Line Pipe Steels
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0065825
EISBN: 978-1-62708-228-0
... Abstract A case of continual product refinement stimulated by product failures was described. Brittle fracture of gas transmission line pipe steels occurred demonstrating a poor combination of materials, environment, manufacturing and installation problems, and loads. Initial efforts were...
Abstract
A case of continual product refinement stimulated by product failures was described. Brittle fracture of gas transmission line pipe steels occurred demonstrating a poor combination of materials, environment, manufacturing and installation problems, and loads. Initial efforts were concentrated towards decreasing the Charpy ductile-to-brittle transition temperature to avoid brittle fracture. It was subsequently revealed that the absorbed energy on the upper shelf of the Charpy energy-temperature curve was critical for arresting a moving crack. Both fracture initiation and fracture propagation were needed be controlled. It was concluded that improved steel processing procedures, chiefly hot-working temperature and deformation control, were also required to optimize microstructure and properties.
Book Chapter
Liquid Metal and Solid Metal Induced Embrittlement
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... Composite Hoop-Wrapped Cylinders, Research and Special Programs Administration, Department of Transportation , Fed. Reg. , Vol 59 , ( No. 142 ), 1994 , p 38028 10. Sperling E.J. and Warke W.R. , Metal Induced Cracking of Aluminum Alloy Piping , PVP , Vol 288 , Service Experience...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060154
EISBN: 978-1-62708-234-1
... had ruptured, causing a section about 100 mm (4 in.) wide by 460 mm (18 in.) long to fall to the furnace floor. The outlet headers were 100 mm (4 in.) nominal diameter schedule 120 (11 mm, or 0.438 in., wall) pipe about 10 m (34 ft) long and were made of ASME SA-452, grade TP316H, stainless steel...
Abstract
One of the coils in the radiant section of a primary reformer furnace used in an ammonia plant was found leaking. The bottom of one of seven outlet headers (made of ASME SA-452, grade TP316H, stainless steel) was revealed during examination to be ruptured. It was revealed by metallurgical examination that it had failed as a result of intergranular fissuring and oxidation (creep rupture). The ruptured area revealed that the header had failed by conventional long-time creep rupture as a result of exposure to operating temperatures probably between 900 and 955 deg C. Three samples from different sections (ruptured area, slightly bulged but nonruptured area and visually sound metal) were inspected. The presence of pinhead-size intergranular fissures throughout the cross sections of the latter two samples was observed. An ultrasonic attenuation method was employed to investigate the remaining headers. All headers were revealed by ultrasonic readings to be in an advanced stage of creep rupture and no areas were found to be fissured to a degree that they needed immediate replacement. As a conclusion, the furnace was deemed serviceable and it was established that in the absence of local hot spots, the headers would survive for a reasonable period of time.
Book Chapter
Liquid-Metal- and Solid-Metal-Induced Embrittlement
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... in self-contained breathing apparatus, in self-contained underwater breathing apparatus cylinders ( Ref 9 , 10 ), and in piping at an NGL plant ( Ref 6 ). The latter case involved two half-pipe headers on a finned plate heat exchanger in an NGL plant after 13 years of service. A 28 cm (11 in.) long...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Book Chapter
Failure of a Stirling Engine Heat Pipe
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001032
EISBN: 978-1-62708-214-3
... Evaporator portion of a finned cylinder heat pipe, showing the crack location where the sodium working fluid leaked to the atmosphere. Locations and viewing directions for metallographic examination are shown in (b). Visual Examination of General Physical Features A plume, which pinpointed...
Abstract
A Stirling engine heat pipe failed after only 2h of operation in a test situation. Cracking at the leading edge of an evaporator fin allowed air to enter the system and react with the sodium coolant. The fin was fabricated from 0.8 mm (0.03 in.) thick Inconel 600 sheet. The wick material was type 316 stainless steel. Macro- and microexaminations of specimens from the failed heat pipe were conducted. The fin cracking was caused by overheating that produced intergranular corrosion in both the fin and the wick. Recommendations for alleviating the corrosion problem included reducing the heat flux, redesigning the wick, and reducing the oxygen content of the sodium.
Book Chapter
Failure of a Reheat Steam Piping Line at a Power-Generating Station
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048801
EISBN: 978-1-62708-229-7
... that, if it was actually applied, it is possible that the pipe cylinder and its weldment were overstressed, perhaps to the point of being damaged. The actual test pressure could not be determined in the original investigation. Two other unconfirmed possibilities are operation of the pipe at higher-than-anticipated service...
Abstract
A 75 cm OD x 33 mm thick pipe in a horizontal section of a hot steam reheat line ruptured after 15 years in service. The failed section was manufactured from rolled plate of material specification SA387, grade C. The longitudinal seam weld was a double butt-weld that was V-welded from both sides and failure was found to propagate along the longitudinal seam and its HAZ. The fracture surface near the inner wall of the pipe was found to have a bluish gray appearance, while the fracture surface near the outer wall was rust colored (oxides). The transverse-to-the-weld specimen from the longitudinal seam weld was revealed to have lower elongation and a shear type failure rather than the cup-cone failures. It was concluded that the welded longitudinal seam exhibited embrittlement. A low-ductility intergranular fracture that progressed through the weld metal was revealed by scanning electron microscopy. The cracks were revealed to be in existence for some time before the final failure which was indicated by the extent and amount of corrosion products. It was concluded that low ductility was responsible for the original initiation of cracks in the pipe.
Book Chapter
The Potential Danger of Centrifuge Baskets
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001458
EISBN: 978-1-62708-220-4
... Abstract Two cases of failure of centrifuge baskets were investigated. The first involved a centrifuge running at approximately 1000 rpm. The basket was constructed from a perforated sheet of stainless steel rolled into a cylinder and joined by a single vee longitudinal weld. Detailed...
Abstract
Two cases of failure of centrifuge baskets were investigated. The first involved a centrifuge running at approximately 1000 rpm. The basket was constructed from a perforated sheet of stainless steel rolled into a cylinder and joined by a single vee longitudinal weld. Detailed examination showed the weld had not completely penetrated the full depth of the section. The fracture faces showed a gradually progressing fatigue crack developing from a notch, formed by the lack of penetration, at the root of the weld. Microscopic examination of the parent plate showed it was a typical titanium stabilized austenitic steel. It is probable that had the basket been subjected to a periodic inspection by a competent person, this failure would not have occurred. The second case concerned a continuous duty centrifuge operating at 2200 rpm. Fracture had occurred at the circumferential weld attaching the stainless steel skirt to the basket rim and also in the region of the vertical weld which was made when the skirt was formed into a cone. Stress-corrosion cracking of the skirt material, which contained residual stresses due to cold-rolling, had been caused by the presence of sodium chloride.
Book Chapter
Reactor Cooling Water Expansion Joint Bellows: The Role of the Seam Weld in Fatigue Crack Development
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001682
EISBN: 978-1-62708-229-7
... steel and contains piping, valves, a main pump, two heat exchangers, and expansion joints. The heat generated during nuclear operations is transferred from the heavy water to the secondary cooling water system through the heat exchangers. The secondary cooling water system also contains piping, valves...
Abstract
The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed.
Book Chapter
Failures of Pipelines
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... continuously as they are brought together to form a cylinder. As the mating surfaces of the joint come together, the steel is resistively heated, and the applied force causes the steel to flow along the bond line toward the pipe inner diameter (ID) and outer diameter (OD). This material flow is intended...
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Book Chapter
Cracking of a Pressure Vessel Due to Penetration by Solder
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001440
EISBN: 978-1-62708-235-8
...-on patch plate or to employ one of the high-strength, non-metallic adhesives. Explosions Gas cylinders Soldered joints Tensile stress 50Pb-50Sn Plate steel Intergranular fracture Liquid metal induced embrittlement Reference is made in other cases in this series of Reports to failures...
Abstract
A portable propane container with a name-plate soldered onto it exploded in service. When the vessel was inspected afterwards, it was found to have developed a crack in the top end plate. A portion of the end plate cut out to include the midlength and one termination of the crack was examined microscopically. This revealed that the crack was associated with intergranular penetration by molten metal. The microstructure in general was indicative of a good-quality mild steel. It was evident from that solder that was responsible for the penetration and that fused brass from the hand wheel had not played any part. Tensile stress was present at the time of the failure sufficiently high to enable solder penetration to take place. The use of soft solder as a medium for attaching name-plates directly on to stressed steel parts is not recommended. It would be preferable to use a welded-on patch plate or to employ one of the high-strength, non-metallic adhesives.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... such as rain erosion of solid materials, gas turbine blades, wind turbine blades, airplane components, and pipe-wall thinning in nuclear/fossil power plants. Because of the fundamental interest in the mechanics of fluids and solids, this topic has been reviewed by Heymann ( Ref 1 ) and Richman ( Ref 2...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Book Chapter
Application of Fracture Mechanics to Pipeline Failure Analysis
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001148
EISBN: 978-1-62708-228-0
... of the pipe that did not fracture during the explosion and from piece 5-1 which contained the fracture origin site. Both pieces were found to have 0.30% carbon and 1.2% Mn with sulfur and phosphorus impurities acceptably low. Fracture mechanics analysis used in conjunction with fractographic results confirmed...
Abstract
A natural gas pipeline explosion and subsequent fire significantly altered the pipeline steel microstructure, obscuring in part the primary cause of failure, namely, coating breakdown at a local hard spot in the steel. Chemical analysis was made on pieces cut from the portion of the pipe that did not fracture during the explosion and from piece 5-1 which contained the fracture origin site. Both pieces were found to have 0.30% carbon and 1.2% Mn with sulfur and phosphorus impurities acceptably low. Fracture mechanics analysis used in conjunction with fractographic results confirmed the existence of a very hard spot in the steel prior to the explosion, which was softened significantly in the ensuing fire. This finding allowed the micromechanism leading to fracture to be identified as hydrogen embrittlement resulting from cathodic charging.
Book Chapter
Metallurgical Evaluation of Prestressed Wire Failures
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001715
EISBN: 978-1-62708-219-8
..., and siphons from Lake Havasu to just south of Tucson, AZ. Six siphons were made from prestressed concrete pipe units 6.4 m (21 ft) in diam and 7.7 m long, making them the largest circular precast structures ever built. The pipe was manufactured on site and consisted of a 495-mm thick concrete core, wrapped...
Abstract
Microstructure, corrosion, and fracture morphologies of prestressed steel wires that failed in service on concrete siphons at the Central Arizona Project (CAP) are discussed. The CAP conveys water for municipal, industrial, and agricultural use through a system of canals, tunnels, and siphons from Lake Havasu to just south of Tucson, AZ. Six siphons were made from prestressed concrete pipe units 6.4 m (21 ft) in diam and 7.7 m long, making them the largest circular precast structures ever built. The pipe was manufactured on site and consisted of a 495-mm thick concrete core, wrapped with ASTM A648 steel prestressing wire. All of the CAP failures evaluated were attributed to corrosion. Longitudinal splits reduced the service life of the pipe significantly by facilitating corrosion and introducing sharp cracks into the microstructure of the wire. A few failures were attributed to general corrosion, where the cross section of the wire is reduced until the strength of the wire is exceeded. Most of the failures evaluated were attributed to stress-corrosion cracking.
Book Chapter
Forms of Corrosion
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... the resistance of the current path in the solution and the external circuit. Thus, if dissimilar pipes are butt welded with the electrolyte flowing through them, the most severe corrosion will occur adjacent to the weld on the anodic member. Effect of Shape The geometry of the circuit elements determines...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Book Chapter
Failures of Pressure Vessels and Process Piping
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... Abstract This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... surfaces affects the resistance of the current path in the solution and the external circuit. Thus, if dissimilar pipes are butt welded with the electrolyte flowing through them, the most severe corrosion will occur immediately adjacent to the weld on the anodic member. Effect of Shape The geometry...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
1