1-14 of 14 Search Results for

Cupronickel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 June 2019
Fig. 1 Cupronickel failure: (a) failed cupronickel tube; and, (b) SEM micrograph of corroded surface. More
Image
Published: 01 January 2002
Fig. 8 Elongated surface cavities on the inside surface of a 70-30 cupronickel tube produced by erosion-corrosion. The tube surface is clean, the attack having occurred due to brine flowing through it at 70 °C (158 °F) with turbulent flow and an excessive level of dissolved oxygen. More
Image
Published: 15 January 2021
Fig. 8 Elongated surface cavities on the inside surface of a 70-30 cupronickel tube produced by erosion-corrosion. The tube surface is clean, the attack having occurred due to brine flowing through it at 70 °C (160 °F) with turbulent flow and an excessive level of dissolved oxygen. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001673
EISBN: 978-1-62708-227-3
... Abstract The failure of a 90-10 cupronickel heat exchanger tube resulted in flooding of the vessel and subsequently sinking it. The corrosion of the cupronickel alloy was facilitated by the high sulfur content of the seawater in which it operated. The failure modes were anodic dissolution...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091806
EISBN: 978-1-62708-219-8
... station condenser tubing cooled by seawater for two copper alloys, an aluminum brass alloyed with arsenic (UNS C68700, ASTM B111, or Cu-Zn-20Al DIN17660), and a cupronickel 70-30 alloy with iron added (C71500, ASTM B111, or Cu-Ni-30Fe DIN17665)) supported the conclusion that the failure was caused...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001374
EISBN: 978-1-62708-215-0
... included use of a higher-copper brass, cupronickel, or Monel for the valve seats and stems and operation of the valves in either the fully opened or closed position. Air-conditioning equipment Heating equipment UNS C35300 C36000 UNS C36000 Erosion - corrosion Erosive wear Background Two...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001335
EISBN: 978-1-62708-215-0
... Abstract The causes of cracking of an as-drawn 90-10 cupronickel tube during mechanical working were investigated to determine the source of embrittlement. Embrittlement was sporadic, but when present was typically noted after the first process anneal. Microstructural and chemical analyses were...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0006898
EISBN: 978-1-62708-233-4
...-nickel, solving the SCC problem. Cupronickel Electric fuses, Materials substitution Nickel brasses 59Cu-12Ni-29Zn Stress-corrosion cracking Several fuses, made of nickel silver (57 to 61% Cu, 11 to 13% Ni, bal Zn), exposed in central offices where the air contained industrial atmospheric...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
..., for example, by cavitation or erosion-corrosion of a pipe in which a liquid is flowing under turbulent conditions, the characteristic teardrop shape of cavities is apparent at low magnification, as may be seen in Fig. 8 . Fig. 8 Elongated surface cavities on the inside surface of a 70-30 cupronickel...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... is apparent at low magnification, as may be seen in Fig. 8 . Fig. 8 Elongated surface cavities on the inside surface of a 70-30 cupronickel tube produced by erosion-corrosion. The tube surface is clean, the attack having occurred due to brine flowing through it at 70 °C (160 °F) with turbulent flow...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... accelerated corrosion of more active materials, such as aluminum and ferrous alloys. In chloride-bearing solutions, nickel is somewhat more noble than copper, and the cupronickels lie somewhere in between. Nickel and its alloys are similar to copper alloys in their effects on stainless steels. In some...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... active materials, such as aluminum and ferrous alloys. In chloride-bearing solutions, nickel is somewhat more noble than copper, and the cupronickels lie somewhere in between. Nickel and its alloys are similar to copper alloys in their effects on stainless steels. In some environments, the cast structure...