Skip Nav Destination
Close Modal
Search Results for
Crankshafts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10 Search Results for
Crankshafts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001232
EISBN: 978-1-62708-233-4
... searching for material faults. Several examples of notch-induced vibrational fractures are presented along with guidelines for investigating their cause. Axles Bending fatigue Bolts Cams Crankshafts St 37 Fatigue fracture Vibrational fractures are cracks formed during often repeated...
Abstract
A bolt breaks along a change in cross section well below its rated capacity. An anchoring screw spins freely in place, having snapped at its first supporting thread. A motor unexpectedly disengages its load, its driveshaft having fractured near a keyway. Such failures – involving axles, leaf springs, engine rods, wing struts, bearings, gears, and more – can occur, seemingly without cause, due to vibrational fracture. Vibrational fractures begin as cracks that form under cyclic loading at nominal stresses which may be considerably lower than the yield point of the material. The fracture is proceeded by local gliding and the development of cracks along lattice planes favorably orientated with respect to the principal stress. This non-reversible process is often misleadingly called “fatigue” and presents significant challenges to engineering teams that ill-advisedly take to searching for material faults. Several examples of notch-induced vibrational fractures are presented along with guidelines for investigating their cause.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001299
EISBN: 978-1-62708-215-0
... Abstract A 4340 steel piston engine crankshaft in a transport aircraft failed catastrophically during flight. The fracture occurred in the pin radius zone. Fractographic studies established the mode of failure as fatigue under a complex combination of bending and torsional stresses. SEM...
Abstract
A 4340 steel piston engine crankshaft in a transport aircraft failed catastrophically during flight. The fracture occurred in the pin radius zone. Fractographic studies established the mode of failure as fatigue under a complex combination of bending and torsional stresses. SEM examination revealed that the fracture origin was a subsurface defect-a hard refractory (Al2O3) inclusion—in the zone close to the pin radius. Chemical analysis showed the crankshaft material to be of inferior quality. It was recommended that magnetic particle inspection using the dc method be used to cheek for cracks during periodic maintenance overhauls.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001752
EISBN: 978-1-62708-241-9
... Abstract Results of failure analyses of two aircraft crankshafts are described. These crankshafts were forged from AMS 6414 (similar composition to AISI 4340) vacuum arc remelted steels with sulfur contents of 0.003% (low sulfur) and 0.0005% (ultra-low sulfur). A grain boundary sulfide...
Abstract
Results of failure analyses of two aircraft crankshafts are described. These crankshafts were forged from AMS 6414 (similar composition to AISI 4340) vacuum arc remelted steels with sulfur contents of 0.003% (low sulfur) and 0.0005% (ultra-low sulfur). A grain boundary sulfide precipitate was caused by overheat of the low sulfur steel, and an incipient melting of grain boundary junctions was caused by overheat of the ultra-low sulfur steel. The precipitates and incipient melting in these two failed crankshafts were observed during the examination. As expected, impact fractures from the low sulfur steel crankshaft contained planar dimpled facets along separated grain boundaries with a small spherical manganese sulfide precipitates within each dimple. In contrast, planar dimpled facets along separated grain boundaries of impact fractures from the ultra-low sulfur crankshaft steel contained a majority of small spherical particles consisting of nitrogen, boron, iron, carbon, and a small amount of oxygen. Some other dimples contained manganese sulfide precipitates. Fatigue samples machined from the ultra-low sulfur steel crankshaft failed internally at planar grain boundary facets. Some of the facets were covered with nitrogen, boron, iron, and carbon film, while other facets were relatively free of such coverage. Results of experimental forging studies defined the times and temperatures required to produce incipient melting overheat and facets at grain boundary junctions of ultra-low sulfur AMS 6414 steels.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001761
EISBN: 978-1-62708-241-9
... Abstract An investigation of a damaged crankshaft from a horizontal, six-cylinder, in-line diesel engine of a public bus was conducted after several failure cases were reported by the bus company. All crankshafts were made from forged and nitrided steel. Each crankshaft was sent for grinding...
Abstract
An investigation of a damaged crankshaft from a horizontal, six-cylinder, in-line diesel engine of a public bus was conducted after several failure cases were reported by the bus company. All crankshafts were made from forged and nitrided steel. Each crankshaft was sent for grinding, after a life of approximately 300,000 km of service, as requested by the engine manufacturer. After grinding and assembling in the engine, some crankshafts lasted barely 15,000 km before serious fractures took place. Few other crankshafts demonstrated higher lives. Several vital components were damaged as a result of crankshaft failures. It was then decided to send the crankshafts for laboratory investigation to determine the cause of failure. The depth of the nitrided layer near fracture locations in the crankshaft, particularly at the fillet region where cracks were initiated, was determined by scanning electron microscope (SEM) equipped with electron-dispersive X-ray analysis (EDAX). Microhardness gradient through the nitrided layer close to fracture, surface hardness, and macrohardness at the journals were all measured. Fractographic analysis indicated that fatigue was the dominant mechanism of failure of the crankshaft. The partial absence of the nitrided layer in the fillet region, due to over-grinding, caused a decrease in the fatigue strength which, in turn, led to crack initiation and propagation, and eventually premature fracture. Signs of crankshaft misalignment during installation were also suspected as a possible cause of failure. In order to prevent fillet fatigue failure, final grinding should be done carefully and the grinding amount must be controlled to avoid substantial removal of the nitrided layer. Crankshaft alignment during assembly and proper bearing selection should be done carefully.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
... arrangement is shown in Fig. 22 . Optical stereomicroscopy of the exemplar crankshaft fatigue fracture surface is shown in Fig. 23 and with high dynamic range in Fig. 24 . Both images illustrate the limited depth of field associated with stereomicroscopic images. Stereomicroscopic photography of a...
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... Characteristic X-pattern on the surface of a medium-carbon steel crankshaft tested under reversed torsional fatigue. Fatigue initiated on a transverse plane of maximum shear, then propagated on two pair of helical surfaces. Source: Ref 11 Fig. 17 Torsional fatigue failure of boron-containing alloy...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006755
EISBN: 978-1-62708-295-2
.... A broken crankshaft is an obvious failure. However, a specification that contains poorly written requirements that fail to properly discern intended performance criteria may go unnoticed for years. In some cases, the reason things go wrong can be traced back to the culture of a company. Human...
Abstract
This article discusses the organization required at the outset of a failure investigation and provides a methodology with some organizational tools. It focuses on the use of problem-solving tools such as a fault tree analysis combined with critical thinking. The discussion covers nine steps to organize a good failure investigation. They are as follows: understand and negotiate goals of the investigation, obtain a clear understanding of the failure, identify all possible root causes, objectively evaluate the likelihood of each root cause, converge on the most likely root cause(s), objectively and clearly identify all possible corrective actions, objectively evaluate each corrective action, select optimal corrective action(s), and evaluate effectiveness of selected corrective action(s). Common problems detrimental to a failure investigation are also covered.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... plate specimen, as shown in Fig. 6 , may be seen if a slice running across from the fracture origin in Fig. 7 is considered. Fig. 5 Fatigue fracture surface appearance of a failed crankshaft, showing “beach marks” on the lower part. The origin of the primary fracture is indicated by the arrow...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
Abstract
Fatigue failures may occur in components subjected to fluctuating (time-dependent) loading as a result of progressive localized permanent damage described by the stages of crack initiation, cyclic crack propagation, and subsequent final fracture after a given number of load fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented.