Skip Nav Destination
Close Modal
Search Results for
Couplings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 247 Search Results for
Couplings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0090436
EISBN: 978-1-62708-233-4
...Abstract Abstract Molded plastic couplings used in an industrial application exhibited abnormally brittle properties, as compared to previously produced components. The couplings were specified to be molded from a custom-compounded glass-filled nylon 6/12 resin. An inspection of the molding...
Abstract
Molded plastic couplings used in an industrial application exhibited abnormally brittle properties, as compared to previously produced components. The couplings were specified to be molded from a custom-compounded glass-filled nylon 6/12 resin. An inspection of the molding resin used to produce the discrepant parts revealed that the pellets were of two general types, neither of which matched the pellets from a retained resin lot. Investigation included visual inspection, micro-FTIR in the ATR mode, and analysis using DSC. The thermograms supported the conclusion that the brittle couplings contained a significant level of contamination, polypropylene and nylon 6/6. The source of the polypropylene was likely the purging compound used to clean the compounding extruder. The origin of the nylon 6/6 resin was unknown but may represent a previously compounded resin.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001617
EISBN: 978-1-62708-227-3
...Abstract Abstract Failures of various types of hydraulic couplings used to connect pipes in a naval vessel are described and used to illustrate some of the general procedures for failure analysis. Cracking of couplings, which were manufactured from nickel-aluminum- bronze extruded bar, occurred...
Abstract
Failures of various types of hydraulic couplings used to connect pipes in a naval vessel are described and used to illustrate some of the general procedures for failure analysis. Cracking of couplings, which were manufactured from nickel-aluminum- bronze extruded bar, occurred in both seawater and air environments. Cracks initiated at an unusually wide variety of sites and propagated in either longitudinal or circumferential directions with respect to the axis of the couplings. Fracture surfaces were intergranular and exhibited little or no sign of corrosion (for couplings cracked in air), and there was very limited plasticity. Macroscopic progression markings were observed on fracture surfaces of several couplings but were not generally evident. At very high magnifications, numerous slip lines, progression markings, and striations were observed. In a few cases, where complete separation had occurred in service, small areas of dimpled overload fracture were observed. It was concluded from these observations, and from comparisons of cracks produced in service with cracks produced by laboratory testing under various conditions, that cracking had occurred by fatigue. The primary cause of failure was probably the unanticipated presence of high-frequency stress cycles with very low amplitudes, possibly due to vibration, resonance, or acoustic waves transmitted through the hydraulic fluid. Secondary causes of failure included the presence of high tensile residual stresses in one type of coupling, undue stress concentrations at some of the crack-initiation sites, and overtorquing of some couplings during installation. Recommendations on ways to prevent further failures based on these causes are discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047823
EISBN: 978-1-62708-236-5
...Abstract Abstract High-horsepower electric motors were utilized to drive large compressors (made of 4340 steel shafts and gear-type couplings) required in a manufacturing process. The load was transmitted by two keys 180 deg apart. Six of the eight compressor shafts were found cracked...
Abstract
High-horsepower electric motors were utilized to drive large compressors (made of 4340 steel shafts and gear-type couplings) required in a manufacturing process. The load was transmitted by two keys 180 deg apart. Six of the eight compressor shafts were found cracked in a keyway and one of them fractured after a few months of operation. Visual examination of fractured shaft revealed that the cracks originated from one of the keyways and propagated circumferentially around the shaft. The shaft and coupling slippage was indicated by the upset keys and this type of fracture. The shaft surface both near and in the keyways indicated fretting which greatly reduced the fatigue limit of the shaft metal and initiated fatigue cracks. Fatigue marks were observed on the fractured key. Repetitive impact loading was responsible for propagation of the cracks. The high cyclic bending stresses were caused by misalignment between the electric motor and compressor and were transmitted to the shaft through the geared coupling. Flexible-disk couplings capable of transmitting the required horsepower were installed on the shafts as a corrective measure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001117
EISBN: 978-1-62708-214-3
...Abstract Abstract Several tin plated, low-alloy steel couplings designed to connect sections of 180 mm (7 in.) diam casing for application in a gas well fractured under normal operating conditions. The couplings were purchased to American Petroleum Institute (API) specifications for P-110...
Abstract
Several tin plated, low-alloy steel couplings designed to connect sections of 180 mm (7 in.) diam casing for application in a gas well fractured under normal operating conditions. The couplings were purchased to American Petroleum Institute (API) specifications for P-110 material. Chemical analysis and mechanical testing of the failed couplings showed that they had been manufactured to the API specification for Q-125, more stringent specification than P-110, and met all requirements of the application. Fractographic examination showed that the point of initiation was an embrittled region approximately 25 mm (1 in.) from the end of the coupling. The source of the embrittlement was determined to be hydrogen charging during tin plating. Changes in the plating process were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001190
EISBN: 978-1-62708-235-8
...Abstract Abstract Brass pipe couplings submitted for examination were deep-drawn from disks then annealed and subsequently cold threaded. Chemical analysis confirmed that the specified alloy Ms 63 was used for fabrication. Some of the pipe already showed fine cracks prior to their installation...
Abstract
Brass pipe couplings submitted for examination were deep-drawn from disks then annealed and subsequently cold threaded. Chemical analysis confirmed that the specified alloy Ms 63 was used for fabrication. Some of the pipe already showed fine cracks prior to their installation. In most cases however the cracks were detected after a certain period of operation. The intercrystalline course of the cracks indicated stress-cracking as it often appears in brass after heavier cold deformation. The splitting of the couplings could have been avoided by a tempering heat treatment at temperatures between 230 and 300 deg C after rolling the threads. This procedure would have reduced the internal stresses while maintaining strengthening gained by the cold deformation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089339
EISBN: 978-1-62708-233-4
...Abstract Abstract Leakage was identified around a coupling welded into a stainless steel holding tank that stored condensate water with low impurity content. The tank and fitting were manufactured from type 304 stainless steel. The coupling joint consisted of an internal groove weld...
Abstract
Leakage was identified around a coupling welded into a stainless steel holding tank that stored condensate water with low impurity content. The tank and fitting were manufactured from type 304 stainless steel. The coupling joint consisted of an internal groove weld and an external fillet weld. Cracking was found to be apparent on the tank surface, adjacent to the coupling weld. Chlorine, carbon, and oxygen in addition to the base metal elements were revealed by energy-dispersive x-ray spectrometric analysis. A great number of secondary, branching cracks were evident in the weld, heat-affected zone, and base metal. The branching and transgranular cracking was found to emanate primarily from the exterior of the tank. It was concluded that the tank failed as a result of stress-corrosion cracking that initiated at the exterior surface as aqueous chlorides, especially within an acidic environment, have been shown to cause SCC in austenitic stainless steels under tensile stress.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001614
EISBN: 978-1-62708-225-9
... coupling of an engine is composed of the housing and head, the seal, and the screws and washers. One of the most vital elements of the coupling, the screws contribute a great deal to the wear resistance and reliability of the seal. 1 In this paper, a failed screw from the seal coupling of a 1.8 liter...
Abstract
The damage to a screw on the head of a 1.8 liter personal car engine was nucleated as the result of common disadvantageous environmental influences and reversed loads leading to corrosion fatigue.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091292
EISBN: 978-1-62708-219-8
...Abstract Abstract A 25 mm (1 in.) copper coupling had been uniformly degraded around most of the circumference of the bell and partially on the spigot end. One penetration finally occurred through the thinned area on the spigot end of the pipe. Investigation supported the conclusion...
Abstract
A 25 mm (1 in.) copper coupling had been uniformly degraded around most of the circumference of the bell and partially on the spigot end. One penetration finally occurred through the thinned area on the spigot end of the pipe. Investigation supported the conclusion that although the pipe was buried in noncorrosive sandy soil, it was found to incur stray currents at 2 Vdc in relation to a Cu/CuSO4 half cell. Recommendations included eliminating, moving, or shielding the source of stray current.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001648
EISBN: 978-1-62708-234-1
...Abstract Abstract During a routine start-up exercise of a standby service water pump, a threaded coupling that joined sections of a 41.5 ft (12.7 m) long pump shaft experienced fracture. The pump was taken out of service and examined to determine the cause of fracture. It was apparent early...
Abstract
During a routine start-up exercise of a standby service water pump, a threaded coupling that joined sections of a 41.5 ft (12.7 m) long pump shaft experienced fracture. The pump was taken out of service and examined to determine the cause of fracture. It was apparent early in the examination that the fracture involved hydrogen stress cracking. However, the nature of the corrosive attack suggested an interaction between the threaded coupling and biological organisms living in the freshwater environment of the pump shaft. The organisms had colonized on the coupling, changing the local environment and creating conditions favorable to hydrogen stress cracking. This paper describes the analysis of the fracture of the coupling and provides an example of how biologically induced corrosion can result in unexpected fracture of a relatively basic machine part.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0046242
EISBN: 978-1-62708-236-5
...Abstract Abstract An integral coupling and gear (Cr-Mo steel), used on a turbine-driven main boiler-feed pump, was removed from service after one year of operation because of excessive vibration. Spectrographic analysis and metallographic examination revealed the fact that gritty material...
Abstract
An integral coupling and gear (Cr-Mo steel), used on a turbine-driven main boiler-feed pump, was removed from service after one year of operation because of excessive vibration. Spectrographic analysis and metallographic examination revealed the fact that gritty material in the gear teeth (found at visual inspection) was composed of the same material as the metal in the coupling. Beach marks and evidence of cold work, typical of fatigue failure, were found on the fracture surface. Chips remaining in the analysis cut were difficult to remove, indicating a strong magnetic field in the part. Evidence found supports the conclusions that failure of the coupling was by fatigue and that incomplete demagnetization of the coupling following magnetic-particle inspection caused retention of metal chips in the roots of the teeth. Improper lubrication caused gear teeth to overheat and spall, producing chips that eventually overstressed the gear, causing failure. Because the oil circulation system was not operating properly, metal chips were not removed from the coupling. Recommendations included checking the replacement coupling for residual magnetism and changing or filtering the pump oil to remove any debris.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001372
EISBN: 978-1-62708-215-0
...Abstract Abstract A coupling in a line-shaft vertical turbine pump installed in a dam foundation fractured after a very short time. The coupling material was ASTM A582 416 martensitic stainless steel. Visual, macrofractographic, and scanning electron microscopic examination of the coupling...
Abstract
A coupling in a line-shaft vertical turbine pump installed in a dam foundation fractured after a very short time. The coupling material was ASTM A582 416 martensitic stainless steel. Visual, macrofractographic, and scanning electron microscopic examination of the coupling showed that the fracture was brittle and was initiated by an intergranular cracking mechanism. The mode of fracture outside the crack initiation zone was transgranular cleavage. No indication of fatigue was found. The failure was attributed to improper heat treatment during manufacture, which resulted in a brittle microstructure susceptible to corrosion. The crack initiated either by stress-corrosion or hydrogen cracking. It was recommended that the couplings in the system be examined for surface cracking and, if present, corrective measures be taken.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001382
EISBN: 978-1-62708-215-0
...Abstract Abstract A trunnion bolt that was part of a coupling in a metropolitan railway system failed in service, causing cars to separate. The bolt had been in service for more than ten years prior to failure. Visual examination showed that the failure resulted from complete fracture...
Abstract
A trunnion bolt that was part of a coupling in a metropolitan railway system failed in service, causing cars to separate. The bolt had been in service for more than ten years prior to failure. Visual examination showed that the failure resulted from complete fracture at the grease port and surface groove located at midspan. Drillings machined from the bolt underwent chemical analysis, which confirmed that the material was AISI 1045 carbon steel, in accordance with specifications. Two sections cut from the bolt were subjected to metallographic examination and hardness testing. The fracture origin was typical of fatigue. The ultimate tensile strength of the bolt was in excess of requirements. Wear patterns indicated that the bolt had been frozen in position for a protracted period and subjected to repeated bending stresses, which resulted in fatigue cracking and final complete fracture. It was recommended that proper lubrication procedures be maintained to allow free rotation of the bolts while in service.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001098
EISBN: 978-1-62708-214-3
...Abstract Abstract Six ASTM A-574 steel cap screws from a hydraulic coupling failed after 3 months in service. The screws were replacements for smaller-diameter cap screws that had been installed during an outage. Six new cap screws were examined along with the failed screws. Eight fracture...
Abstract
Six ASTM A-574 steel cap screws from a hydraulic coupling failed after 3 months in service. The screws were replacements for smaller-diameter cap screws that had been installed during an outage. Six new cap screws were examined along with the failed screws. Eight fracture locations were identified—three at the head-to-shank fillet, four at the eighth thread root from the cap, and one at the sixth thread root from the cap. Fracture surfaces were examined using a stereomicroscope and SEM, and the fracture mode was shown to be transgranular. EDS on the fracture surfaces showed sulfur and chlorine in the surface deposits. The observations indicated that the screws had failed by fatigue. Insufficient preloading was considered to be the most likely cause of the fatigue cracking. It was recommended that the proper preload on the screws be verified and maintained.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001167
EISBN: 978-1-62708-228-0
...Abstract Abstract Visual examination, optical and scanning electron microscopy were used to determine the cause of failure in the connector groove of a marine riser coupling. The specified steel was AISI 4142 (0.40 to 0.45% C; 0.75 to 1.00% Mn; 0.20 to 0.35% Si; 0.80 to 1.10% Cr; 0.15 to 0.25...
Abstract
Visual examination, optical and scanning electron microscopy were used to determine the cause of failure in the connector groove of a marine riser coupling. The specified steel was AISI 4142 (0.40 to 0.45% C; 0.75 to 1.00% Mn; 0.20 to 0.35% Si; 0.80 to 1.10% Cr; 0.15 to 0.25% Mo) normalized from 9000C. Microscopic examination revealed the crack's initiation point and subsequent propagation. SEM examination of chemically stripped corrosion showed that corrosion fatigue and stress corrosion might have contributed to the initial slow crack growth. Impact tests revealed a fracture transition temperature in excess of 1000C. The sequence of events leading to failure was detailed. The main recommendation was to quench and temper existing couplings and to use a lower carbon quenched and tempered steel for new couplings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091669
EISBN: 978-1-62708-227-3
...Abstract Abstract During a routine inspection, cracks were discovered in several aluminum alloy (similar to either 2014 or 2017) coupling nuts on the fuel lines of a missile. The fuel lines had been exposed to a marine atmosphere for six months while the missile stood on an outdoor test stand...
Abstract
During a routine inspection, cracks were discovered in several aluminum alloy (similar to either 2014 or 2017) coupling nuts on the fuel lines of a missile. The fuel lines had been exposed to a marine atmosphere for six months while the missile stood on an outdoor test stand near the seacoast. A complete check was then made, both visually and with the aid of a low-power magnifying glass, of all coupling nuts of this type on the missile. Investigation (visual inspection, spectrographic and chemical analysis, and metallographic examination) supported the conclusion that the cracking of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction of stress. The elongated grain structure transverse to the direction of stress was a consequence of following the generally used procedure of machining this type of nut from bar stock. Recommendations included changing the materials specification for new coupling nuts for this application to permit use of only aluminum alloys 6061-T6 and T651 and 2024-T6, T62, and T851.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001748
EISBN: 978-1-62708-225-9
...Abstract Abstract A pinion gear made of AMS 6470 steel, nitrided all over, lost internal splined teeth due to wear. Spline failure of the power turbine gear caused an engine overspeed and disintegration. Excessive spline wear resulted from a new coupling being mated during overhaul with a worn...
Abstract
A pinion gear made of AMS 6470 steel, nitrided all over, lost internal splined teeth due to wear. Spline failure of the power turbine gear caused an engine overspeed and disintegration. Excessive spline wear resulted from a new coupling being mated during overhaul with a worn gear spline. Wear on the spline teeth flanks of the coupling was attributed to severe wear on the mating gear (internal) spline teeth. The assigned cause was an inadequate maintenance procedure which resulted in a wear-damaged component being retained in the power train during engine overhaul. To prevent reoccurrence, specific inspection criteria were issued defining maximum limits for spline wear. A procedure and requirements were specified for installing the coupling and pinion gear at the next overhaul.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001432
EISBN: 978-1-62708-221-1
... or depressions disposed in an annular manner. When sectioned, the nuts showed a surprising method of construction. The nuts for the bolts had been made by using conventional pipe couplings inserted into sleeves made from hexagonal bar and the coupling secured to the sleeve by welding at each outer face. The ends...
Abstract
During the pre-test inspection following the stress calculation check on a 7-ton capacity Scotch derrick crane, it was noted that threads on the back stay anchorage bolts were of unusually fine pitch (11 tpi) and that the machined faces of the nuts showed irregular pits or depressions disposed in an annular manner. When sectioned, the nuts showed a surprising method of construction. The nuts for the bolts had been made by using conventional pipe couplings inserted into sleeves made from hexagonal bar and the coupling secured to the sleeve by welding at each outer face. The ends of the sleeve bore were chamfered to form a weld preparation. After welding, the faces were machined which resulted in the removal of most of the weld metal and revealed a pronounced lack of penetration. All bolts used to anchor derrick crane back stays should be designed in accordance with the recommendations of British Standard 327:1964 (Clauses 10 and 18).
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0092155
EISBN: 978-1-62708-221-1
... and the adjacent splined coupling sleeve. Specifications included that the gear and coupling be made from 4140 steel bar oil quenched and tempered to a hardness of 265 to 290 HB (equivalent to 27 to 31 HRC) and that the finish-machined parts be single-stage gas nitrided to produce a total case depth of 0.5 mm...
Abstract
Component slippage in the left-side final drive train of a tracked military vehicle was detected after the vehicle had been driven 13,700 km (8500 miles) in combined highway and rough-terrain service. The slipping was traced to the mating surfaces of the final drive gear and the adjacent splined coupling sleeve. Specifications included that the gear and coupling be made from 4140 steel bar oil quenched and tempered to a hardness of 265 to 290 HB (equivalent to 27 to 31 HRC) and that the finish-machined parts be single-stage gas nitrided to produce a total case depth of 0.5 mm (0.020 in.) and a minimum surface hardness equivalent to 58 HRC. Investigation (visual inspection, low-magnification images, 500X images of polished sections etched in 2% nital, spectrographic analysis, and hardness testing) supported the conclusion that the failure occurred by crushing, or cracking, of the case as a result of several factors. Recommendations included reducing the high local stresses at the pitch line to an acceptable level with a design modification. Also suggested was specification of a core hardness of 35 to 40 HRC to provide adequate support for the case and to permit attainment of the specified surface hardness of 58 HRC.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... , with permission from Elsevier Fig. 8 Example bithermal fatigue thermomechanical fatigue waveforms. (a) Bithermal fatigue waveform employed during laboratory testing. Image (a) adapted from Ref 6 , with permission from Elsevier. (b) Coupled high-cycle fatigue and bithermal fatigue waveform Fig...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001826
EISBN: 978-1-62708-241-9
..., nondestructive testing, energy dispersive x-ray analysis, and inductively coupled plasma mass spectrometry. The tube was made from SA 210A1 carbon steel that had been compromised by wall thinning and the accumulation of fire and water-side scale deposits. Investigators determined that the tube failed due...
Abstract
A back wall riser tube in a high pressure boiler failed, interrupting operations in a cogeneration plant. The failure occurred in a tube facing the furnace, causing eight ruptured openings over a 1.8 m section. The investigation consisted of an on-site visual inspection, nondestructive testing, energy dispersive x-ray analysis, and inductively coupled plasma mass spectrometry. The tube was made from SA 210A1 carbon steel that had been compromised by wall thinning and the accumulation of fire and water-side scale deposits. Investigators determined that the tube failed due to prolonged caustic attack that led to ruptures in areas of high stress. The escaping steam eroded the outer surface of the tube causing heavy loss of metal around the rupture points.