1-20 of 428 Search Results for

Corrosion environment

Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047917
EISBN: 978-1-62708-227-3
... that the failure was caused by fatigue initiated in corrosion pits (caused by seawater). The fracture was found to be transgranular. It was recommended that the inner and outer rings should both be made from the more corrosion resistant 17-4 PH (AISI type 630) stainless steel. Cyclic load Hydrofoils Stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001171
EISBN: 978-1-62708-219-8
... during cooling was investigated. The specimens were taken from various sources including transverse and longitudinal welding seam, sensitized areas and it was concluded appropriate material selection with respect to medium could control some corrosion processes. Marine environments Materials...
Image
Published: 01 December 1993
Fig. 8 Interaction of a corrosive environment with a carburized and zinc plated high strength fastener under stress Anode reaction Zn ↔ Zn+ + +2e−; Cathode reaction H2O ↔ H+ + OH− More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046969
EISBN: 978-1-62708-227-3
... Abstract Aluminide-coated and uncoated IN-713 turbine blades were returned for evaluation after service in a marine environment because of severe corrosion. Based on service time, failure of these blades by corrosive deterioration was considered to be premature. Analysis (visual inspection...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001592
EISBN: 978-1-62708-228-0
... Abstract Sucker-rod pumps are operating in very aggressive environments in oil well production. The combined effect of a corrosive environment and significant mechanical loads contribute to frequent cases of failure of the rod string during operation. Standards and recommendations have been...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0001667
EISBN: 978-1-62708-225-9
... shutdown periods at ambient temperatures. The corrosive environment contained trace hydrogen chloride and acetic acid vapors as well as calcium chloride if leaks occurred. The exact service life was unknown. The bolt surfaces showed extensive corrosion deposits. Cracks had initiated at both the thread...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... Abstract Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091694
EISBN: 978-1-62708-220-4
..., and 250X micrographs etched in 10% ammonium persulfate solution) supported the conclusion that the tube sheets failed by SCC as a result of the combined action of internal stresses and a corrosive environment. The internal stresses had been induced by retubing operations, and the environment had become...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046981
EISBN: 978-1-62708-218-1
... operating temperature in a corrosive environment. When the microstructure near the stem surface was examined, it was apparent that carbide spheroidization had occurred. Also, there was a coarsening of the carbide network within the austenite grains. The microstructure indicated that the underhead region...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001421
EISBN: 978-1-62708-235-8
... that cracking was due to corrosion-fatigue, which arose from the combined effect of a fluctuating tensile stress in the presence of a mildly corrosive environment. Corrosion environments Magnetic particle testing Optical microscopy Steam pipes Tensile stress Weld metal Welded steel Joining-related...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001383
EISBN: 978-1-62708-215-0
... exacerbated the situation by providing a strong local corrosion cell in the form of a sacrificial anode region adjacent to the cracked thread. The enhanced generation of hydrogen in a corrosive environment subsequently lead to HASC of the wheel studs. Case-hardened fasteners Fasteners Stress-corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051870
EISBN: 978-1-62708-228-0
... stress and corrosion in the presence of water and hydrogen sulfide was concluded to have initiated the failure which was propagated by fatigue. It was recommended that in the presence of known corrosive environments the tubing should not be used above 50% of its theoretical fatigue life. Coiled...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001805
EISBN: 978-1-62708-241-9
... Abstract Several surgical tool failures were analyzed to understand why they occur and how to prevent them. The study included drills, catheters, and needles subjected to the rigors of biomedical applications such as corrosive environments, high stresses, sterilization, and improper cleaning...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001392
EISBN: 978-1-62708-231-0
... in an oxidizing or corrosive environment. The cracking in this particular case was due principally to the inordinately large gap between the components. Additionally, several of the sealing welds of the tubes to the back tube plate were cracked in a radial manner, and it would appear that in addition, abnormal...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001510
EISBN: 978-1-62708-217-4
... be defined as the spontaneous failure of a metal resulting from the combined effects of a corrosive environment and the effective component of tensile stress acting on the structure. However, because of the orientation dependence in aluminum, it is the residual stress occurring in the most susceptible...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001403
EISBN: 978-1-62708-220-4
... precipitation. The transgranular cracks indicated that failure was due partly to stress-corrosion. It was concluded that the chlorides provided the main corrodent for both the stress and intercrystalline-corrosion cracking. Chemical processing equipment Chlorides Corrosion environments Heat...
Image
Published: 15 January 2021
Fig. 54 Plot showing the effect of initial tensile stress on stress-corrosion cracking time to fracture of brass in three corrosive environments at room temperature. Curve A: samples were partially immersed in concentrated ammonium hydroxide; B: samples were exposed to the vapor More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091330
EISBN: 978-1-62708-234-1
... conducted heat from the chimney and reheated the condensate. Investigation (visual inspection and welded coupon testing) supported the conclusion that the corrosion was caused by “Green Death,” a corrosive medium used to test for pitting resistance (11.9% H2SO4 + 1.3% HCl + 1% FeCl3 + 1% CuCl2) at 103 deg C...
Image
Published: 01 January 2002
Fig. 43 Effect of initial tensile stress on time-to-fracture by SCC at room temperature of brass in three corrosive environments. Curve A, partly immersed in concentrated ammonium hydroxide; B, exposed to the vapor of concentrated ammonium hydroxide; C, exposed to a gaseous mixture of ammonia More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001830
EISBN: 978-1-62708-241-9
... is expected for the mentioned bolt. The failed marriage bolt also contained a chromium-nickel coating layer to provide anti-corrosion properties [ 2 ]. The thickness of this layer was 2 μm. The aggressive corrosion environment had deteriorated this layer in some places of the bolt surface and corrosion...