Skip Nav Destination
Close Modal
Search Results for
Copper contamination
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 55 Search Results for
Copper contamination
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048702
EISBN: 978-1-62708-220-4
... primarily copper sulfide, with zinc and aluminum sulfides while the green deposit was revealed to be copper chloride. The combination of sulfide and chloride attack on the tubes was concluded to have resulted in the failure. Injection of ferrous sulfate upstream of the condenser which could aid the...
Abstract
An aluminum brass seawater surface condenser failed due to pitting after less than one year of service. Large pits filled with a green deposit were evidenced under the nonuniform black scale present over the entire inside surface of the tube. The black deposit was identified as primarily copper sulfide, with zinc and aluminum sulfides while the green deposit was revealed to be copper chloride. The combination of sulfide and chloride attack on the tubes was concluded to have resulted in the failure. Injection of ferrous sulfate upstream of the condenser which could aid the formation of protective oxide films was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001700
EISBN: 978-1-62708-229-7
... Abstract A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral...
Abstract
A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral surfaces. Several of the heat exchangers used in the same application at the plant had experienced a severe reduction in efficiency in the past few years. One heat exchanger reportedly experienced some form of leakage following discovery of oil contaminating the cooling water. This heat exchanger was the subject of a failure investigation to determine the cause and location of the leaks. Corrosion products primarily contained copper oxide, as would be expected from a copper tubing. The product also exhibited the presence of a significant amount of iron oxides. Metallographic cross sectioning of the tubes and microscopic analysis revealed several large and small well rounded corrosion pits present at the inner diametral surfaces. The cause of corrosion was attributed to corrosive waters that were not only corroding the copper, but were corroding steel pipes upstream from the tubing.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001338
EISBN: 978-1-62708-215-0
... Abstract Copper tubes from the cooler assemblies of a large air-conditioning unit exhibited leakage upon installation of the unit. Sections from two leaking tubes and one nonleaking tube were subjected to pressure testing and microscopic examination. The cause of leaking was determined to be...
Abstract
Copper tubes from the cooler assemblies of a large air-conditioning unit exhibited leakage upon installation of the unit. Sections from two leaking tubes and one nonleaking tube were subjected to pressure testing and microscopic examination. The cause of leaking was determined to be pitting corrosion. Extensive pitting was found on the insides of all sections examined, with deep and numerous pits in leaking areas. Circumstantial evidence indicated that antifreeze solution left in the tubes from the manufacturing operation was the most likely cause of the pitting.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001318
EISBN: 978-1-62708-215-0
... for a contaminant to the internal environment of the cylinder or to some agent that may have contaminated the disc prior to installation. More extensive EDS analysis was subsequently performed. Copper, zinc and iron indications are the result of the base alloy composition. Some of the iron detected...
Abstract
Failure of three C22000 commercial bronze rupture discs was caused by mercury embrittlement. The discs were part of flammable gas cylinder safety devices designed to fail in a ductile mode when cylinders experience higher than design pressures. The subject discs failed prematurely below design pressure in a brittle manner. Fractographic examination using SEM indicated that failure occurred intergranularly from the cylinder side. EDS analysis indicated the presence of mercury on the fracture surface and mercury was also detected using scanning auger microprobe (SAM) analysis. The mercury was accidentally introduced into the cylinders during a gas-blending operation through a contaminated blending manifold. Replacement of the contaminated manifold was recommended along with discontinued use of mercury manometers, the original source of mercury contamination.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001836
EISBN: 978-1-62708-241-9
..., investigators concluded the pipe was contaminated with copper at the mill were it was produced. line pipe cracks copper contamination high-strength low-alloy pipe steel copper entrapment SEM backscattered electron analysis bend ductility API 5L X65 PSL2 (high-strength low-alloy steel...
Abstract
An investigation was conducted to determine why 16 out of 139 pipe bends cracked during hot induction bending. The pipe conformed to API 5L X65 PSL2 line pipe standards and measured 1016 mm (40 in.) in diam with a wall thickness of 18.5 mm. A metallurgical cross section was removed along a crack on the extrados to document the crack morphology using optical microscopy. In addition to cracking, golden-yellow streaks were visible at the extrados, and the composition was examined using scanning electron microscopy with energy dispersive spectroscopy. Based on the results, investigators concluded the pipe was contaminated with copper at the mill were it was produced.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001335
EISBN: 978-1-62708-215-0
... contamination occurring in the casting process that became concentrated in the recycled skimmings. It was recommended that future material specifications for skimmings and for externally obtained scrap copper include a trace analysis for tellurium. Cupronickel Embrittlement Segregations Tellurium...
Abstract
The causes of cracking of an as-drawn 90-10 cupronickel tube during mechanical working were investigated to determine the source of embrittlement. Embrittlement was sporadic, but when present was typically noted after the first process anneal. Microstructural and chemical analyses were performed on an embrittled section and on a section from a different lot that did not crack during forming. The failed section showed an intergranular fracture path. Examination of the fracture surfaces revealed the presence of tellurium at the grain boundaries. The source of the tellurium was thought to be contamination occurring in the casting process that became concentrated in the recycled skimmings. It was recommended that future material specifications for skimmings and for externally obtained scrap copper include a trace analysis for tellurium.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001341
EISBN: 978-1-62708-215-0
... dust from the tube surface, showed lead, silicon, aluminum, and calcium as the predominant contaminants, with lesser concentrations of iron, chromium, nickel, copper, and titanium. The fracture surface was enriched in iron ( Ref 1 ). Sporadic areas of iron-nickel and chromium-iron occurred throughout...
Abstract
An SB407 alloy 800H tube failed at a 100 deg bend shortly after startup of a new steam superheater. Three bends failed and one bend remote from the failure area was examined. Visual examination showed that the fracture started on the outside surface along the inside radius of the bend and propagated in a brittle, intergranular fashion. Chemical analysis revealed that lead contamination was a significant factor in the failure and phosphorus may have contributed. The localized nature of the cracks and minimum secondary cracking suggested a distinct, synergistic effect of applied tensile stress with the contamination. Stress analysis found that stress alone was not enough to cause failure; however the operating stresses in the 100 deg bends were higher than at most other locations in the superheater Reduced creep ductility may be another possible cause of failure. Remedial actions included reducing the tube temperature, replacing the Schedule 40 100 deg bends with Schedule 80 pipe, and solution annealing the pipe after bending.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001344
EISBN: 978-1-62708-215-0
... 0.025 0.040 max Sulfur 0.021 0.030 max Silicon 0.58 0.75 max Nickel 10.10 8.00 to 11.00 Chromium 18.30 18.00 to 20.00 Molybdenum 0.30 … Copper 0.28 … Iron Bal Bal Scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) was used to determine the...
Abstract
Several 304H stainless steel superheater tubes fractured in stressed areas within hours of a severe caustic upset in the boiler feedwater system. Tests performed on a longitudinal weld joint, which connected two adjacent tubes in the tertiary superheater bank, confirmed caustic-induced stress-corrosion cracking, promoted by the presence of residual welding stresses. Improved maintenance of check valves and routine inspection of critical monitoring systems (conductivity alarms, sodium analyzers, etc.) were recommended to help avoid future occurrences of severe boiler feedwater contamination. Additional recommendations were to eliminate these short longitudinal weld joints by using a bracket assembly joint between the tubes, use a post-weld heat treatment to relieve residual welding stress or select a more stress-corrosion cracking resistant alloy for this particular application.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001277
EISBN: 978-1-62708-215-0
... Abstract Waterwall tube failure samples removed from a coal- and oil-fired boiler in service for 12 years exhibited localized underdeposit corrosion and hydrogen damage. EDS and XRD revealed that bulk internal deposits collected from the tubes contained metallic copper which can accelerate...
Abstract
Waterwall tube failure samples removed from a coal- and oil-fired boiler in service for 12 years exhibited localized underdeposit corrosion and hydrogen damage. EDS and XRD revealed that bulk internal deposits collected from the tubes contained metallic copper which can accelerate corrosion through galvanic effects and can promote hydrogen damage. Ultrasonic testing was recommended to locate tubes with severe gouging and corrosion, which are suspect locations for hydrogen damage. The source of the copper should be identified and future chemical cleaning of the boiler should address its presence in the waterwall tubes.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001076
EISBN: 978-1-62708-214-3
... eye. Macrophotography showed that the attack was more severe at one edge of each pad, resulting in deeper grooving and a buildup of deposits, mostly silver sulfides. Microstructural analysis of a cross section indicated that the interface between the silver overlay and the substrate (beryllium copper...
Abstract
The silver layer on a thrust bearing face experienced electrostatic discharge attack (the bombardment of an in-line series of individual sparks onto the soft bearing face), which destroyed the integrity of the bearing surface. The electrical attack appeared as scratches to the naked eye. Macrophotography showed that the attack was more severe at one edge of each pad, resulting in deeper grooving and a buildup of deposits, mostly silver sulfides. Microstructural analysis of a cross section indicated that the interface between the silver overlay and the substrate (beryllium copper) was sound and free of voids and foreign material. Corrosion products contained a large quantity of sulfur. The probable cause of the attack was the presence of electrical current within the system, with sulfides a possible contributing factor. Elimination of residual magnetism and grounding of the rotating system at appropriate locations were recommended.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application...
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... of the zinc-rich primer, and when welding was performed through spattered regions, LMIE cracks formed adjacent to the weld passes. Reference 24 reports HAZ cracking at butt welds in thin sheets of type 304L stainless steel when the weld area had been contaminated with copper particles. This...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001132
EISBN: 978-1-62708-214-3
... a multistory office building in 1975 failed, causing substantial water damage. There was no fire in the building. No evidence of tampering with the heads was detected. The chrome-plated copper cups ( Fig. 2 ) exhibited no discoloration, indentations, or scratches. Fig. 2 Separated copper...
Abstract
A sprinkler head unit that was installed in a smoking lounge of a multi story office building in 1975 failed, causing substantial water damage. There was no fire in the building. A set of four sprinkler heads -- three that had been installed in 1975 (the failed unit, an unfailed unit from the same room, and an unfailed unit from another room) and an unused 1991 unit -- were examined. casting revealed no material defects or mechanical damage. Because of several environmental factors, it was suspected that the failed unit was exposed to temperatures much above the normal office environment. On this basis, it was concluded that creep of the solder alloy was the most probable cause of failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001772
EISBN: 978-1-62708-241-9
... corroded away ( Fig. 1 ). The edges of the fins had a reddish copper color in them ( Fig. 2 ). The internal surfaces showed a directionality of corrosion typical of erosion due to the mechanical flow of the stream through the part. Fig. 1 Photographs of as-received part (units are in inches). ( a...
Abstract
A cast silicon bronze (UNS C86700) impeller that had been severely corroded was submitted for failure analysis. The failed part was used to pump potable water, but service life and chlorine content of the water were unknown. The impeller displayed a Cu-rich red phase on its surfaces and showed a pattern very similar to dezincification. Further investigation to determine the cause of damage using light microscopy and SEM-EDS techniques revealed that the microstructure consisted of multiple phases and that a Si-rich phase was being preferentially attacked, leading to increased porosity. After a thorough examination, it was concluded that the part had failed due to dealloying via desiliconification.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001739
EISBN: 978-1-62708-215-0
... responsible for the hydrogen damage found in the rear wall tube section. Corrosive attack and hydrogen damage were aggravated by the copper present in the internal deposits due to galvanic effects. The remaining water circuit boiler tubing should be examined by nondestructive techniques for any evidence of...
Abstract
The rear wall tube section of a boiler that had been in service for approximately 38 years was removed and examined. Visual examination of the tube revealed a small bulge with a through-wall crack. Metallography showed that the microstructure of the bulged area consisted of a few partially decarburized pearlite colonies in a ferrite matrix. The microstructure remote from the bulged area consisted of pearlite in a ferrite matrix. EDS analysis of internal deposits on the tube detected a major amount of iron, plus trace amounts of other elements. The evidence indicated that the bulge and crack in the tube resulted from hydrogen damage. Examination of the remaining water circuit boiler tubing using nondestructive techniques and elimination of any heavy deposit buildup was recommended.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
...×, 20 kV accelerating voltage. Courtesy of C. Wright, NASA Fig. 5 A backscattered electron image showing surface contamination of a failed copper bourdon tube in a pressure regulator allows for targeted chemical analysis of the contamination. 23×, 20 kV accelerating voltage. Courtesy of C...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001336
EISBN: 978-1-62708-215-0
... vendor per ASTM A380, “Cleaning and Descaling Stainless Steel Parts, Equipment and Systems.” The pipe assemblies were required to be checked for proper passivation by in-house quality-control personnel per ASTM A380, “The Copper Sulfate Test” (section 7.2.5.3). No hardness or tensile specifications were...
Abstract
Catastrophic pitting corrosion occurred in type 304L stainless steel pipe flange assemblies in an industrial food processor. During regular service the pumped medium was pureed vegetables. In situ maintenance procedures included cleaning of the assemblies with a sodium hypochlorite solution. It was determined that the assemblies failed due to an austenite-martensite galvanic couple activated by a chlorine bearing electrolyte. The martensitic areas resulted from a transformation during cold-forming operations. Solution annealing after forming, revision of the design of the pipe flange assemblies to eliminate the forming operation, and removal of the source of chlorine were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001045
EISBN: 978-1-62708-214-3
... ). Chemical analysis showed that the tubes were fabricated from copper alloy 270 (yellow brass, 65% Cu), and energy-dispersive analysis showed that only part of the nominal 35% Zn remained in the porous and brittle layer. Metal structure and composition are very important in dezincification. Brasses...
Abstract
A failure analysis was conducted on brass alloy 270 heat exchanger tubes that were pulled from a unit used to cool oil for the speed regulators and thrust bearings of a hydroelectric power plant. The tubes began to leak after approximately 5.5 years of service. Macrophotography and scanning electron microscopy were used to examine samples from the tubes. An energy-dispersive electron microprobe analysis was carried out to evaluate the zinc distribution. Results showed that the failure was due to dezincification. Replacement of the tubes with new tubes fabricated from a dezincification-resistant alloy was recommended.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... producing longitudinal and transverse sections. Each direction shows different information. (a) Medium-carbon steel plate. Nital etch. Transverse and (b) longitudinal sections. (c) Copper water pipe. Ferric chloride etch. Transverse and (d) longitudinal sections The practices that should be used when...
Abstract
Visual examination, using the unaided eye or a low-power optical magnifier, is typically one of the first steps in a failure investigation. This article presents the guidelines for selecting samples for scanning electron microscope examination and optical metallography and for cleaning fracture surfaces. It discusses damage characterization of metals, covering various factors that influence the damage, namely stress, aggressive environment, temperature, and discontinuities.