Skip Nav Destination
Close Modal
Search Results for
Control valves
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 129 Search Results for
Control valves
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001558
EISBN: 978-1-62708-217-4
... Abstract A liquid hydrogen main fuel control valve for a rocket engine failed by fracture of the Ti-5Al-2.5Sn body during the last of a series of static engine test firings. Fractographic, metallurgical, and stress analyses determined that a combination of fatigue and unexpected aqueous stress...
Abstract
A liquid hydrogen main fuel control valve for a rocket engine failed by fracture of the Ti-5Al-2.5Sn body during the last of a series of static engine test firings. Fractographic, metallurgical, and stress analyses determined that a combination of fatigue and unexpected aqueous stress-corrosion cracking initiated and propagated the crack which caused failure. The failure analysis approach and its results are described to illustrate how fractography and fracture mechanics, together with a knowledge of the crack initiation and propagation mechanisms of the valve material under various stress states and environments, helped investigators to trace the cause of failure.
Image
in Failure of 17-4 PH Stainless Steel Bolts on a Titan Space Launch Vehicle
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Image
in Failure Analysis: Sulfide Stress Corrosion Cracking and Hydrogen-Induced Cracking of A216-WCC Wellhead Flow Control Valve Body
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 1 Wellhead flow control valve body, 3″ID 2500# A216-WCC, the body carries sour gases with a high wet H 2 S content (24,000 ppm). The maximum working pressure is 1100 psi
More
Image
in Failure Analysis: Sulfide Stress Corrosion Cracking and Hydrogen-Induced Cracking of A216-WCC Wellhead Flow Control Valve Body
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in Failure Analysis: Sulfide Stress Corrosion Cracking and Hydrogen-Induced Cracking of A216-WCC Wellhead Flow Control Valve Body
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 Severe corrosion on the inner surface of the control valve body, ( a ) near the seat ring, ( b ) near the valve’s flange
More
Image
in Failures of Structures and Components by Metal-Induced Embrittlement
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 14 Simplified engineering drawing of thermostatically controlled valve, showing position of cracking
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... Abstract A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Image
Published: 01 January 2002
Fig. 9 Fault tree representation of the “valve does not respond to the controller—stays open” failure mode ( Ref 27 )
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001296
EISBN: 978-1-62708-215-0
... microscope and/or a borescope. Aircraft components Airplanes Bearing steel Control valves Electric discharge machining Engine components Low-cycle fatigue 52000 Fatigue fracture Metalworking-related failures Brittle fracture Background A steel relay valve guide component operating...
Abstract
A 52000 bearing steel valve guide component operating in the fuel supply system of a transport aircraft broke into two pieces after 26 h of flight. The valve guide fractured through a set of elongated holes that had been electrodischarge machined into the component. Analysis indicated that the part failed by low cycle fatigue. The fracture was brittle in nature and had originated at a severely eroded zone of craters in a hard, deep white layer that was the result of remelting during electrodischarge machining. It was recommended that the remaining parts be inspected using a stereoscopic microscope and/or a borescope.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0046505
EISBN: 978-1-62708-219-8
... of the contact area was by ductile (transgranular) fracture. Recommendations included changing the latch material from malleable iron to silicon bronze (C87300). The use of silicon bronze prevents corrosion or galvanic attack and proper adjustment of the latch maintains an adequate contact area. Control...
Abstract
One of three valves in a dry automatic sprinkler system tripped accidentally, thus activating the sprinklers. Maintenance records showed that the three valves had been in service less than two years. The valve consisted of a cast copper alloy clapper plate that was held closed by a pivoted malleable iron latch. The latch and top surface of the clapper plate were usually in a sanitary-water environment (stabilized, chlorinated well water with a pH of 7.3) under stagnant conditions. Process make-up water that had been clarified, filtered, softened, and chlorinated and had a pH of 9.8 was occasionally used in the system. Analysis (visual inspection and 250x micrograph) supported the conclusions that failure of the latch was caused by plastic deformation from extensive loss of metal by galvanic corrosion and the sudden loading related to the tripping of the valve. Failure in some regions of the contact area was by ductile (transgranular) fracture. Recommendations included changing the latch material from malleable iron to silicon bronze (C87300). The use of silicon bronze prevents corrosion or galvanic attack and proper adjustment of the latch maintains an adequate contact area.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048733
EISBN: 978-1-62708-235-8
..., the operators immediately went to the control room and found that the steam-temperature valve that admits steam to the brine heater was secured. However, the chart indicated that the brine temperature was 60 °C (140 °F) and that the pressure in the steam supply had increased. The steam valve was immediately...
Abstract
The brine-heater shell in a seawater-conversion plant failed by bursting along a welded joint connecting the hot well (C70600 per ASTM B 466) to the heater shell (ASTM A285, grade C steel). Three cracks in the welded joints between the heater shell and the hot well were revealed by visual inspection. It was observed that crack 1 and 2 were covered with high-temperature oxidation products which revealed that the surfaces had been separated for quite some time. A very high discontinuity stress which existed at the longitudinal welds between the hot well and the heater shell was revealed by stress analysis. It was interpreted that the cracks had originated shortly after the heater was put into operation and propagated slowly initially. The rate of propagation was interpreted to have increased due to discontinuity stresses greater than yield strength of the material. It was concluded that the brine heater cracked and fractured because it was overstressed in normal operation. The heater design was modified to make the heater shell and the hot well two separate units. A relief valve was recommended in the heater or in the steam line near the heater.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001329
EISBN: 978-1-62708-215-0
... fitting and two ASME SB-148 CA 954 valve bodies) and an entire valve assembly. The leaks were found to be in the socket-weld crevice area and had resulted from dealloying. It was recommended that the weld joint geometry be modified. Control valves Cooling systems Cooling water Hydraulic valves...
Abstract
Various aluminum bronze valves and fittings on the essential cooling water system at a nuclear plant were found to be leaking. The leakage was limited to small-bore socket-welded components. Four specimens were examined: three castings (an ASME SB-148 CA 952 elbow from a small-bore fitting and two ASME SB-148 CA 954 valve bodies) and an entire valve assembly. The leaks were found to be in the socket-weld crevice area and had resulted from dealloying. It was recommended that the weld joint geometry be modified.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0092148
EISBN: 978-1-62708-235-8
... Abstract Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized...
Abstract
Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized. The cylinder in which the spool fitted was made of 1117 steel, also gas carburized. Investigation (visual inspection, low magnification images, 400x images, metallographic exam, and hardness testing) supported the conclusion that momentary sliding contact between the spool and the cylinder wall caused unstable retained austenite in the failed cylinder to transform to martensite. The increase in volume resulted in sufficient size distortion to cause interference between the cylinder and the spool, seizing, and loss of flow control. The failed parts had been carburized in a process in which the carbon potential was too high, which resulted in a microstructure having excessive retained austenite after heat treatment. Recommendations included modifying the composition of the carburizing atmosphere to yield carburized parts that did not retain significant amounts of austenite when they were heat treated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... is complicated because several mechanisms operate simultaneously or sequentially. For example, a structural component in a space launch vehicle can be simultaneously subjected to stress, a marine environment, and complex fatigue loads and frequencies. A series of bolts on thrust control valves for a Titan...
Abstract
Several stainless steel bolts used on a Titan Space Launch Vehicle broke at the shank and failure was attributed to stress-corrosion cracking. But results could not be duplicated in the laboratory with salt-solution immersion tests until the real culprit was established: the secondary effect of galvanic coupling, hydrogen embrittlement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0045992
EISBN: 978-1-62708-225-9
... Abstract After two weeks of operation, a poppet used in a check valve to control fluid flow and with a maximum operating pressure of 24 MPa (3.5 ksi) failed during operation. Specifications required that the part be made of 1213 or 1215 rephosphorized and resulfurized steel. The poppet...
Abstract
After two weeks of operation, a poppet used in a check valve to control fluid flow and with a maximum operating pressure of 24 MPa (3.5 ksi) failed during operation. Specifications required that the part be made of 1213 or 1215 rephosphorized and resulfurized steel. The poppet was specified to be case hardened to 55 to 60 HRC, with a case depth of 0.6 to 0.9 mm (0.025 to 0.035 in.); the hardness of the mating valve seat was 40 HRC. Analysis showed that the fracture occurred through two 8 mm (0.313 in.) diam holes at the narrowest section of the poppet. The valve continued to operate after it broke, which resulted in extensive loss of metal between the holes. 80x micrograph and 4x macrograph of a 5% nital etched longitudinal section, and chemical analyses showed the poppet did fit 1213 or 1215 specs. However, hardness measurements showed surface hardness was excessive-61 to 65 HRC instead of the specified 55 to 60 HRC. Thus, the poppet failed by brittle fracture, and cracking occurred across nonmetallic inclusions. Recommendation was to redesign the valve with the poppet material changed to 4140 steel, hardened, and tempered to 50 to 55 HRC.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001123
EISBN: 978-1-62708-214-3
... environment in a coastal area. It was recommended that proper chemical analysis of the zinc-aluminum alloy be carried out as a quality control procedure. Die castings Marine environments Zamak 3 Intergranular corrosion Intergranular fracture Background Extensive cracking was found in a batch...
Abstract
Extensive cracking was found in a batch of die-cast ZAMAK 3 solenoid valve seats during commissioning of the system in which they were installed. Scanning electron microscopic and chemical analyses conducted on one of the failed valve seats showed that the composition of the alloy was different from that specified. The presence of excess aluminum and lead impurities that had segregated to the grain boundaries, coupled with an inadequate amount of magnesium, resulted in intergranular corrosion and subsequent intergranular failure. Corrosion was accelerated by storage in a humid environment in a coastal area. It was recommended that proper chemical analysis of the zinc-aluminum alloy be carried out as a quality control procedure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001010
EISBN: 978-1-62708-229-7
... component. In this particular case, control of dissolved solids in the boiler feedwater may have been inadequate. Steam collectors Superheaters Carbon steel Pitting corrosion Stress-corrosion cracking Figure 1 shows the arrangement of the outlet from a superheater in a generator producing...
Abstract
A superheater in a generator produced 80 t/h of steam at 400 deg C and 41 kPa. Failure took place at the connection from the collector to the vent line used during start up. The material of construction was carbon steel, and the unit had 240,000 h of operation at the time of failure, with 99 shutdowns. Widespread cracking on the inside was apparent, the most severe cracking being some distance from the nozzle connection in a downstream direction. Widespread cracking and pitting were observed also at the connections to the safety valve and soot blower. Pitting was most apparent on the downstream sides of the openings in the shell. In all the damaged areas the mechanism of failure involved surface pitting and subsequent SCC. This failure showed the problems that can develop where there are long lines in which condensation may occur and return periodically to a superheater or other hot component. In this particular case, control of dissolved solids in the boiler feedwater may have been inadequate.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001001
EISBN: 978-1-62708-229-7
... by corrosion deposits at their tips. The failure suggests control of dissolved solids in the boiler feedwater may have been inadequate. Boilers Corrosion products Superheater headers 2.25Cr-1Mo Thermal fatigue fracture Corrosion fatigue Examination of the header of the third superheater...
Abstract
Examination of the header of the third superheater of a boiler producing 150 t/h of steam at 525 deg C and 118 kPa, disclosed extensive internal cracking at the connection to the tube joining this to a safety valve. Cracking was observed within the tube and in the thickness of the shell wall itself. The boiler had been in operation for approximately 160,000 h and was shut down for inspection when the cracking was detected. The material involved was 2.25 Cr, 1 Mo steel, and the unit had been subjected to 115 shutdowns. Initiation of the cracks was attributed to thermal shock, caused by the periodic return of condensate along the long connecting line (some 9 m long). Propagation of the cracks was due to thermal cycling, together with periodic pressure cycles, producing growth by low cycle fatigue. This was aided by corrosion within the cracks and by the wedging action caused by corrosion deposits at their tips. The failure suggests control of dissolved solids in the boiler feedwater may have been inadequate.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048169
EISBN: 978-1-62708-233-4
... Abstract A valve-seat retainer spring (made of 0.23 mm thick 17-7 PH stainless steel) from a fuel control on an aircraft engine was found to be broken after 3980 h of service. The two inner tabs were found to be broken off. The part was revealed to be in relative rotation against its contacting...
Abstract
A valve-seat retainer spring (made of 0.23 mm thick 17-7 PH stainless steel) from a fuel control on an aircraft engine was found to be broken after 3980 h of service. The two inner tabs were found to be broken off. The part was revealed to be in relative rotation against its contacting member by the radial wear marks on the convex surface. Beach marks indicating that fatigue fracture had been initiated at the convex surface of the washer and had propagated across to the concave surface were revealed by examination of the fractured surfaces of the washer. The cracks were revealed to have originated in the 0.38-mm radius fillet between the tab and the body of the washer. It was interpreted from the analysis of the compound fracture that it was composed of fatigue fractures caused by the formed tab being loaded so as to compress the spring along the axis of its centerline and produce torsional vibrations. It was concluded that the two inner tabs had broken in fatigue as the result of cyclic loading that compressed and torsionally vibrated the spring. The fillets were replaced with slots to minimize stress concentration at the corners as a corrective measure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... areas wherever possible. Failure of a Brass Valve in an Aircraft Engine Oil-Cooler An investigation of the cause of a cockpit-warning light indicating low oil pressure in an F-111 engine oil-cooler revealed that the crimped end of the housing of a thermostatically controlled valve was cracked...
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
1