Skip Nav Destination
Close Modal
Search Results for
Condensers (liquefiers)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6 Search Results for
Condensers (liquefiers)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001047
EISBN: 978-1-62708-214-3
... the inlet and replacement of the floating skirt with virgin material (i.e., material unaffected by weld repairs). Chemical processing equipment Condenser tubes, corrosion Condensers (liquefiers) Heat-affected zone Nitric acid, environment Repair welding Tube plate, corrosion Welded joints...
Abstract
An E-Brite /Ferralium explosively bonded tube sheet in a nitric acid condenser was removed from service because of corrosion. Visual and metallographic examination of tube sheet samples revealed severe cracking in the heat-affected zone between the outer tubes and the weld joining the tube sheet to the floating skirt. Cracks penetrated deep into the tube sheet, and occasionally into the tube walls. The microstructures of both alloys and of the weld appeared normal. Intergranular corrosion characteristic of end-grain attack was apparent. A low dead spot at the skirt / tube sheet joint allowed the Nox to condense and subsequently reboil. This, coupled with repeated repair welding in the area, reduced resistance to acid attack. Intergranular corrosion continued until failure. Recommendations included changing operating parameter inlet to prevent HNO3 condensation outside the inlet and replacement of the floating skirt with virgin material (i.e., material unaffected by weld repairs).
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001213
EISBN: 978-1-62708-220-4
..., a type of steel has to be chosen which is resistant to intergranular corrosion. Condensers (liquefiers) Screening X5CrNiMo 18 10 Intergranular corrosion Fragments of screen bars which as structural elements of a condenser had come into contact with cooling water from the mouth of a river...
Abstract
Fragments of screen bars which as structural elements of a condenser had come into contact with cooling water from the mouth of a river were received. The screen bars were made of stainless austenitic Cr-Ni-Mo steel X 5 Cr-Ni-Mo18 10 (Material No. 1.4401). The bars were fractured repeatedly. The ruptures did not occur exclusively or even preferentially at the loops, but just as frequently at locations between them. The mistake made in this case was annealing the steel at a temperature in the critical region. This was probably done to relieve stresses that originated during cold-forming and led to damage by stress corrosion. This would have been the correct method for a ferritic steel, but not austenitic steel, which requires the special heat treatment indicated. When an anneal in the critical region is unavoidable and the indicated additional treatment is impossible or difficult, a type of steel has to be chosen which is resistant to intergranular corrosion.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001312
EISBN: 978-1-62708-215-0
.... Hydrostatic testing at a pressure times greater than the maximum operating pressure prior to placing the component in service was also suggested. Condenser tubes Condensers (liquefiers) Refrigerating machinery Cu-0.04Sn-0.02Al Ductile fracture Background A copper condenser dashpot...
Abstract
A copper condenser dashpot in a refrigeration plant failed prematurely. The dashpot was a long tubular component with a cup brazed at each end. Stereomicroscopic examination of the fracture surface at low magnification revealed a typical ductile mode of failure. The failure was attributed to insufficient component thickness, which made the dashpot unable to withstand internal operating pressure, and to extensive annealing in the heat-affected zones of the brazed joints. It was recommended that the condenser dashpot design take into account the annealing effects of brazing. Hydrostatic testing at a pressure times greater than the maximum operating pressure prior to placing the component in service was also suggested.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... (300,000 miles) of interstate and intrastate pipelines in the United States. Beyond gathering and transmission lines, other related assets include gas and liquid storage facilities; processing, compressor, and odorant stations; liquefied natural gas processing facilities; power generation; and distribution...
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9