Skip Nav Destination
Close Modal
By
Cassio Barbosa, Simone Kessler de Barros, Ibrahim de Cerqueira Abud, Joneo Lopes do Nascimento, Sheyla Santana de Carvalho
Search Results for
Concentric pipe
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 53 Search Results for
Concentric pipe
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001793
EISBN: 978-1-62708-241-9
... Abstract A controllable pitch propeller (CPP) on a dynamic positioning ship failed after eight months of operation. The CPP design consists of a hollow propeller shaft and a concentrically located pipe that operates inside. The pitch of the propeller blades is controlled hydraulically through...
Abstract
A controllable pitch propeller (CPP) on a dynamic positioning ship failed after eight months of operation. The CPP design consists of a hollow propeller shaft and a concentrically located pipe that operates inside. The pitch of the propeller blades is controlled hydraulically through the longitudinal displacement of the inner (concentric) pipe. Fractography, microstructural, microhardness, and chemical analyses revealed that the concentric pipe failed due to fatigue. Fatigue cracks initiated along longitudinal welds where wire spacers attach to the external surface of the pipe. The effect of crack-like defects, stress concentration at the weld toe, residual tensile stress, and lack of penetration contributed to a shorter fatigue crack initiation phase and premature failure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001060
EISBN: 978-1-62708-214-3
... fracture was caused by intergranular corrosion/stress-corrosion cracks that initiated from the external surface of the pipe reducer section. Contributory factors were the sensitized condition of the flange and the concentration of corrosive elements from the bleach stock plant environment on the external...
Abstract
A type 316 stainless steel pipe reducer section failed in service of bleached pulp stock transfer within 2 years in a pulp and paper mill. The reducer section fractured in the heat-affected zone of the flange-to-pipe weld on the flange side. The pipe reducer section consisted of 250 and 200 mm (10 and 8 in.) diam flanges welded to a tapered pipe section. The tapered pipe section was 3.3 mm (0.13 in.) thick type 316 stainless steel sheet, and the flanges were 5 mm (0.2 in.) thick CF8M (type 316) stainless steel castings. Visual and metallographic analysis indicated that the fracture was caused by intergranular corrosion/stress-corrosion cracks that initiated from the external surface of the pipe reducer section. Contributory factors were the sensitized condition of the flange and the concentration of corrosive elements from the bleach stock plant environment on the external surface. In the absence of the sensitized condition of the flange, the service of the pipe reducer section was acceptable. A type 316L stainless steel reducer section was recommended to replace the 316 component because of its superior resistance to sensitization.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091528
EISBN: 978-1-62708-229-7
... possible that, on the basis of prolonged exposure, oxygen in the range of 0.2 to 1.0 ppm could have provided the necessary ion concentration. All replacement pipe sections were installed using low-heat-input, multiple-pass welding procedures. When stress corrosion is identified as the mechanism of a...
Abstract
A 150 mm (6 in.) schedule 80S type 304 stainless steel pipe (11 mm, or 0.432 in., wall thickness), which had served as an equalizer line in the primary loop of a pressurized-water reactor, was found to contain several circumferential cracks 50 to 100 mm (2 to 4 in.) long. Two of these cracks, which had penetrated the pipe wall, were responsible for leaks detected in a hydrostatic test performed during a general inspection after seven years of service. Investigation (visual inspection, visual and ultrasonic weld examination, water analysis, and chemical analysis) supported the conclusion that the failure was caused by SCC due to stress, sensitization, and environment. Recommendations included replacing all pipe sections and installing them using low-heat-input, multiple-pass welding procedures.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001057
EISBN: 978-1-62708-214-3
... nipple. The fact that the pipe was manufactured by cold drawing lends further support, because this process would produce residual stresses. Moreover, a material in the highly coldworked condition has a reduced ductility and is more prone to failure due to stress concentrations (e.g., a preexisting crack...
Abstract
A brass (CDA alloy 230) pipe nipple that was part of a domestic cold water bath system failed two weeks after installation. Macrofractography, SEM examination, metallography, and chemical analyses were performed on specimens cut through the main fracture surface. The physical and background evidence obtained indicated failure due to cracking initiated by stamped markings on the pipe wall and extended by high circumferential residual stresses. It was recommended that annealed pipe be used.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001331
EISBN: 978-1-62708-215-0
... factor. There is usually an space between the scale and the pipe metal where hydroxyl or hydrogen ion concentrations are increased, causing active corrosion and the production of hydrogen. The local temperature of the metal under these deposits also increases, which enhances further reaction and metal...
Abstract
A high-pressure steam pipe specified to be P22 low-alloy steel failed after 25 years of service. Located at the end of the steam line, the pipe reportedly received no steam flow during normal service. Visual examination of the failed pipe section revealed a window fracture that appeared brittle in nature. Specimens from the fracture area and from an area well away from the fracture were examined metallographically and chemically analyzed. Results indicated that the pipe had failed by hydrogen damage that resulted in brittle fracture. Chemical analysis indicated that the pipe material was 1020 carbon steel, not P22. The misapplication of pipe material was considered to be a contributing factor. Position of the pipe within the system caused the localized damage.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001836
EISBN: 978-1-62708-241-9
... Abstract An investigation was conducted to determine why 16 out of 139 pipe bends cracked during hot induction bending. The pipe conformed to API 5L X65 PSL2 line pipe standards and measured 1016 mm (40 in.) in diam with a wall thickness of 18.5 mm. A metallurgical cross section was removed...
Abstract
An investigation was conducted to determine why 16 out of 139 pipe bends cracked during hot induction bending. The pipe conformed to API 5L X65 PSL2 line pipe standards and measured 1016 mm (40 in.) in diam with a wall thickness of 18.5 mm. A metallurgical cross section was removed along a crack on the extrados to document the crack morphology using optical microscopy. In addition to cracking, golden-yellow streaks were visible at the extrados, and the composition was examined using scanning electron microscopy with energy dispersive spectroscopy. Based on the results, investigators concluded the pipe was contaminated with copper at the mill were it was produced.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001115
EISBN: 978-1-62708-214-3
..., which penetrated the pipe throughout the grain boundaries of the material and concentrated in the matrix in a layer near the inside surface of the pipe, were observed. The presence of H2S in the produced fluids and the appearance of the gray deposit indicated that the tube suffered H2S corrosion...
Abstract
During a work over of an oil well, the 9% Ni steel production tubing parted three times as it was being pulled from the well. The tubing had performed satisfactorily for more than 30 years in the well A representative failure, a circumferential fracture in a connection, was analyzed. Reported to be a hydril CS connection, the pin end parted near the last threads. The external surface exhibited mechanical damage marks from the fishing operation. No signs of external corrosion or damage were detected. Visual surface examination revealed shear lips at the outside pipe, indicating that the fracture initiated at the inside surface and grew across the wall. Longitudinal cross sections revealed heavy corrosion damage to the inside pipe surface. Metallographic examination indicated that the tubing failed as a result of severe weakening from internal corrosion. Gray-colored corrosion deposits, which penetrated the pipe throughout the grain boundaries of the material and concentrated in the matrix in a layer near the inside surface of the pipe, were observed. The presence of H2S in the produced fluids and the appearance of the gray deposit indicated that the tube suffered H2S corrosion. Chemical analysis of the base metal and corrosion deposits did not detect iron or nickel sulfides, however Replacement of the remaining pipe strings according to a scheduled program was recommended. Because 9% Ni steel was not available, 13% Cr martensitic stainless steel was recommended as a replacement.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... variations in temperature and humidity provide a condensation/evaporation mechanism for concentrating corrosive salt species. The white deposits seen on the inside surface of the pipe were suspected to be corrosive salts that were highly aggressive toward the zinc coating, thereby exposing base metal to the...
Abstract
High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency particulate air filters. The failure analysis investigation concluded that nitrate-induced stress-corrosion cracking was the cause of the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001398
EISBN: 978-1-62708-229-7
... Abstract Several articulated bellows of 10 in. ID developed leakage from the convolutions after a service life of some 18 months. One of the units received from examination showed cracking at the crown of a convolution and at the attachment weld to the pipe. Sectioning of the bellows revealed...
Abstract
Several articulated bellows of 10 in. ID developed leakage from the convolutions after a service life of some 18 months. One of the units received from examination showed cracking at the crown of a convolution and at the attachment weld to the pipe. Sectioning of the bellows revealed many others cracks on the internal surface which did not penetrate to the outside. Microscopical examination showed multiple intergranular, tree-like cracking typical of stress-corrosion cracking. Concentration of sodium hydroxide occurred in the bellows unit and the stress-corrosion cracking which developed was of the form known as caustic cracking. It was recommended that water for de-superheater use should be taken after the deaerator and prior to the addition of salts which may deposit or concentrate in the desuperheater.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001791
EISBN: 978-1-62708-241-9
... Abstract A pipe in the lateral wall of a boiler powering an aircraft carrier flat-top boat failed during a test at sea. The pipe was made from ASTM 192 steel, an adequate material for the application. Microstructural analysis along with equipment operating records provided valuable insight into...
Abstract
A pipe in the lateral wall of a boiler powering an aircraft carrier flat-top boat failed during a test at sea. The pipe was made from ASTM 192 steel, an adequate material for the application. Microstructural analysis along with equipment operating records provided valuable insight into what caused the pipe to rupture. Although the pipe had been replaced just 50 h before the accident, the analysis revealed incrustations and corrosion pits on the inner walls and oxidation on the outer walls. Microstructural changes were also observed, indicating that the steel was exposed to high temperatures. The combined effect of pitting, incrustations, and phase transformations caused the pipe to rupture.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001275
EISBN: 978-1-62708-215-0
... Abstract A high-density polyethylene (HDPE) natural gas distribution pipe (Grade PE 3306) failed by slow, stable crack growth while in residential service. The leak occurred at a location where a squeeze clamp had been used to close the pipe during maintenance. Failure analysis showed that the...
Abstract
A high-density polyethylene (HDPE) natural gas distribution pipe (Grade PE 3306) failed by slow, stable crack growth while in residential service. The leak occurred at a location where a squeeze clamp had been used to close the pipe during maintenance. Failure analysis showed that the origin of the failure was a small surface crack in the inner pipe wall produced by the clamping. Fracture mechanics calculations confirmed that the suspected failure process would result in a failure time close to the actual time to failure. It was recommended that: materials be screened for susceptibility to the formation of the inner wall cracks since it was not found to occur in pipe typical of that currently being placed in service; pipes be re-rounded after clamp removal to minimize residual stresses which caused failure; and a metal reinforcing collar be placed around the squeeze location after clamp removal.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091617
EISBN: 978-1-62708-220-4
... Abstract A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger...
Abstract
A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger consisted of a flange made from a casting, and a reducing cone, a short length of pipe, and a 90 deg elbow, all made of 13 mm thick plate. A liner wrapped with insulation was welded to the smaller end of the reducing cone. All of the piping up to the flange was wrapped with insulation. Investigation (visual inspection, 10x unetched images, liquid-penetrant inspection, and chemical analysis of the insulation) supported the conclusion that the failure occurred in the area of the flange-to-cone weld by SCC as the result of aqueous chlorides leached from the insulation around the liner by condensate. Recommendations included eliminating the chlorides from the system, maintaining the temperature of the outlet stream above the dewpoint at all times, or that replacing the type 316 stainless steel with an alloy such as Incoloy 800 that is more resistant to chloride attack.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001559
EISBN: 978-1-62708-229-7
... Abstract One inch diam Type 304 stainless steel piping was designed to carry containment atmosphere samples to an analyzer to monitor hydrogen and oxygen levels during operational and the design basis accident conditions that are postulated to occur in a boiling water reactor. Only one of six...
Abstract
One inch diam Type 304 stainless steel piping was designed to carry containment atmosphere samples to an analyzer to monitor hydrogen and oxygen levels during operational and the design basis accident conditions that are postulated to occur in a boiling water reactor. Only one of six lines in the system had thru-wall cracks. Shallow incipient cracks were detected at the lowest elevations of one other line. The balance of the system had no signs of SCC attack. Chlorides and corrosion deposits in varying amounts were found throughout the system. The failure mechanism was transgranular, chloride, stress-corrosion cracking. Replacement decisions were based on the presence of SCC attack or heavy corrosion deposits indicative of extended exposure time to chloride-contaminated water. The existing uncracked pipe, about 75 percent of the piping in the system, was retained despite the presence of low level surface chlorides. Controls were implemented to insure that temperatures are kept below 150 deg F, or, walls of the pipe are moisture-free or the cumulative wetted period will never exceed 30 h.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001341
EISBN: 978-1-62708-215-0
... included reducing the tube temperature, replacing the Schedule 40 100 deg bends with Schedule 80 pipe, and solution annealing the pipe after bending. Boiler tubes Brittle fracture Contaminants Creep (materials) Ductility Intergranular fracture Lead (metal), Impurities Mechanical properties...
Abstract
An SB407 alloy 800H tube failed at a 100 deg bend shortly after startup of a new steam superheater. Three bends failed and one bend remote from the failure area was examined. Visual examination showed that the fracture started on the outside surface along the inside radius of the bend and propagated in a brittle, intergranular fashion. Chemical analysis revealed that lead contamination was a significant factor in the failure and phosphorus may have contributed. The localized nature of the cracks and minimum secondary cracking suggested a distinct, synergistic effect of applied tensile stress with the contamination. Stress analysis found that stress alone was not enough to cause failure; however the operating stresses in the 100 deg bends were higher than at most other locations in the superheater Reduced creep ductility may be another possible cause of failure. Remedial actions included reducing the tube temperature, replacing the Schedule 40 100 deg bends with Schedule 80 pipe, and solution annealing the pipe after bending.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001594
EISBN: 978-1-62708-229-7
...-bore piping systems. The risk factors that are associated with fatigue-induced failures of socket-welded joints are also associated with threaded joints. Threaded joints, however, are subject to unique risks like over-tightening, and the built-in stress concentration sites at the thread roots. A...
Abstract
Nuclear power plants typically experience two or three high-cycle fatigue failures of stainless steel socket-welded connections in small bore piping during each plant-year of operation. This paper discusses fatigue-induced failure in socket-welded joints and the strategy Texas Utilities Electric Company (TU Electric) has implemented in response to these failures. High-cycle fatigue is invisible to proven commercial nondestructive evaluation (NDE) methods during crack initiation and the initial phases of crack growth. Under a constant applied stress, cracks grow at accelerating rates, which means cracks extend from a detectable size to a through-wall crack in a relatively short time. When fatigue cracks grow large enough to be visible to NDE, it is likely that the component is near the end of its useful life. TU Electric has determined that an inspection program designed to detect a crack prior to the component leaking would involve frequent inspections at a given location and that the cost of the inspection program would far exceed the benefits of avoiding a leak. Instead, TU Electric locates these cracks by visually monitoring for leaks. Field experience with fatigue-induced cracks in socket-welded joints has confirmed that visual monitoring does detect cracks in a timely manner, that these cracks do not result in catastrophic failures, and that the plant can be safely shut down in spite of a leaking socket-welded joint in a small bore pipe. Historical data from TU Electric and Southwest Research Institute are presented regarding the frequency of failures, failure locations, and the potential causes. The topics addressed include 1) metallurgical and fractographic features of fatigue cracks at the weld toe and weld root; 2) factors that are associated with fatigue, such as mechanical vibration, internal pulsation, joint design, and welding workmanship; and 3) implications of a leaking crack on plant safety. TU Electric has implemented the use of modified welding techniques for the fabrication of socket-welded joints that are expected to improve their ability to tolerate fatigue.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001116
EISBN: 978-1-62708-214-3
... Abstract Two failures of AP15A grade J-55 electric resistance welded (ERW) tubing in as our gas environment were investigated. The first failure occurred after 112 days of service. Replacement pipe failed 2 days later. Surface examination of the failed tubing indicated that fracture initiated...
Abstract
Two failures of AP15A grade J-55 electric resistance welded (ERW) tubing in as our gas environment were investigated. The first failure occurred after 112 days of service. Replacement pipe failed 2 days later. Surface examination of the failed tubing indicated that fracture initiated at the outside surface. Metallographic analysis showed that the fracture originated in the upturned fibers adjacent to the ERW bond line. Cross sections of the weld were removed from three random locations in the test sample. At each location, the up turned fibers of the weld zone contained bands of hard-appearing microstructure. Hardness measurements confirmed these observations. The cracks followed these bands. It was concluded that the tubing failed from sulfide stress cracking, which resulted from bands of susceptible microstructure in the ERW zone. The banded microstructure in the pipe suggested that chemical segregation contributed to the hard areas. Postweld normalized heat treatment apparently did not sufficiently reduce the hardness of these areas.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001071
EISBN: 978-1-62708-214-3
... Abstract A gray cast iron (ASTM 247 type A) gate valve in an oleum and sulfuric acid piping loop at a chemical process plant fractured catastrophically after approximately 10 years of service. The valve was a 150 mm (6 in.) bolted flange type rated to conform to ANSI B16.1 for service at 1034...
Abstract
A gray cast iron (ASTM 247 type A) gate valve in an oleum and sulfuric acid piping loop at a chemical process plant fractured catastrophically after approximately 10 years of service. The valve was a 150 mm (6 in.) bolted flange type rated to conform to ANSI B16.1 for service at 1034 kPa (150 psi) and 120 deg C (250 deg F) maximum in 93 to 99% sulfuric acid. The fracture originated at stress-corrosion cracks that occurred in a high-stress transition region at the valve body-to-flange juncture. The mechanical properties of the failed valve were below those of the manufacturer's cited specification, and the wall thickness through which the fracture occurred exceeded the minimum 9.5 mm (38 in.) thickness cited by the manufacturer The valve flange had been unbolted and rebolted to a maintenanced piping coil immediately prior to failure. It was recommended that the flange-to-valve body juncture be redesigned to reduce stress levels. A method of maintenance and inspection in concert with a criterion for life prediction for this and other valves and components in the system was also recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... Abstract The failure mode of through-wall cracking of a butt weld in a 5083-O aluminum alloy piping system in an ethylene plant was identified as mercury liquid metal embrittlement. As a result of this finding, 226 of the more than 400 butt welds in the system were ultrasonically inspected for...
Abstract
The failure mode of through-wall cracking of a butt weld in a 5083-O aluminum alloy piping system in an ethylene plant was identified as mercury liquid metal embrittlement. As a result of this finding, 226 of the more than 400 butt welds in the system were ultrasonically inspected for cracking. One additional weld was found that had been degraded by mercury. A welding team experienced in repairing mercury contaminated piping was recruited to make the repairs. Corrective action included the installation of a sulfur-impregnated charcoal mercury-removal bed and replacement of the aluminum equipment that was in operation prior to the installation of the mercury-removal bed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001842
EISBN: 978-1-62708-241-9
... concentration carbon steel heat affected zone metallurgical notch ring test cyclic bending stress fatigue limit ASTM A106 (seamless carbon steel pipe) UNS K02501 The fractured part of concern is a long, slender roll that was located in the dryer section of a paper manufacturing...
Abstract
A felt guide roll fractured in-service on a paper manufacturing machine, damaging the belt as well as multiple dryer rolls, nearby felt guide rolls, and the frame of the machine. The investigation included visual and stereoscopic examination, chemical and microstructural analysis, microhardness and tensile testing, stress calculations, and vibration measurements. Based on the results, the roll fracture was attributed to high-cycle fatigue associated with a plug weld over one of the five threaded fasteners added to secure a balance weight inside the roll. The balance weight was installed to compensate for variations in wall thickness (i.e., weight distribution) of the pipe product used to make the roll. According to the investigation, resonance and vibration, which were initially considered, did not cause the failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089730
EISBN: 978-1-62708-233-4
... Abstract Stainless steel liners (AISI type 321) used in bellows-type expansion joints in a duct assembly installed in a low-pressure nitrogen gas system failed in service. The duct assembly consisted of two expansion joints connected by a 32 cm (12 in.) OD pipe of ASTM A106 grade B steel...
Abstract
Stainless steel liners (AISI type 321) used in bellows-type expansion joints in a duct assembly installed in a low-pressure nitrogen gas system failed in service. The duct assembly consisted of two expansion joints connected by a 32 cm (12 in.) OD pipe of ASTM A106 grade B steel. Elbows made of ASTM A234 grade B steel were attached to each end of the assembly, 180 deg apart. A 1.3 mm (0.050 in.) thick liner with an OD of 29 cm (11 in.) was welded inside each joint. The upstream ends were stable, but the downstream ends of the liners remained free, allowing the components to move with the expansion and contraction of the bellows. Investigation (visual inspection, hardness testing, and 30x fractographs) supported the conclusion that the liners failed in fatigue initiated at the intersection of the longitudinal weld forming the liner and the circumferential weld by which it attached to the bellows assembly. Recommendations included increasing the thickness of the liners from 1.3 to 1.9 mm (0.050 to 0.075 in.) in order to damp some of the stress-producing vibrations.