Skip Nav Destination
Close Modal
By
Leland E. Shields, Robert A. Clark, Roland Huet
By
G.H. Walter, R.M. Hendrickson, R.D. Zipp
By
Friedrich Karl Naumann, Ferdinand Spies
By
J.A. Pineault, M. Belassel, M.E. Brauss
Search Results for
Compressive stress
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 325
Search Results for Compressive stress
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Fading of surface compressive stress induced with a number of fretting cycl...
Available to PurchasePublished: 01 January 2002
Fig. 20 Fading of surface compressive stress induced with a number of fretting cycles by shot peening
More
Image
Nominal compressive stress curves of polychlorotrifluoroethylene at various...
Available to Purchase
in Creep, Stress Relaxation, and Yielding Mechanisms
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 10 Nominal compressive stress curves of polychlorotrifluoroethylene at various pressures. Source: Ref 58
More
Image
(a) Fading of surface compressive stress induced with a number of fretting ...
Available to PurchasePublished: 15 January 2021
Fig. 28 (a) Fading of surface compressive stress induced with a number of fretting cycles by shot peening. Adapted from Ref 93 . (b) Evolution of fretting fatigue endurance (cracking failure) as a function of fatigue stress for constant partial slip fretting loading ( P = Cst, Q * = Cst
More
Image
Compressive stress–strain response of the subject and exemplar aluminum hos...
Available to Purchase
in Failure Analysis and Mechanical Performance Evaluation of a Cast Aluminum Hybrid-Iron Golf Club Hosel
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 5 Compressive stress–strain response of the subject and exemplar aluminum hosels at room temperature and strain rate of 0.001/s. (We deduced that the aluminum alloy could be A360.0)
More
Image
Impact crater area versus compressive residual stress for impacts normal to...
Available to PurchasePublished: 15 January 2021
Fig. 20 Impact crater area versus compressive residual stress for impacts normal to the lay and compressive stresses perpendicular to the grinding direction (■) and for impacts perpendicular to the lay and compressive stresses parallel to the grinding direction (●), using sintered reaction
More
Image
Impact crater area vs. compressive residual stress for impacts normal to th...
Available to PurchasePublished: 01 January 2002
Fig. 18 Impact crater area vs. compressive residual stress for impacts normal to the lay and compressive stresses perpendicular to the grinding direction (○), and for impacts perpendicular to the lay and compressive stresses parallel to the grinding direction (●), using sintered reaction
More
Image
Plot of the change in the compressive residual stress due to heat treatment...
Available to Purchase
in X-Ray Diffraction Residual Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 01 January 2002
Image
in X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
> Failure Analysis and Prevention
Published: 15 January 2021
Image
in Failure Analysis Case Study on a Fractured Tailwheel Fork
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Book Chapter
Stress-Corrosion Cracking Caused by Residual Stresses in Chromium Silicon Alloy Steel Helical Compression Springs
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001119
EISBN: 978-1-62708-214-3
... Intergranular fracture Background Two samples of helical compression springs composed of chromium-silicon steel (50 to 54 HRC) failed early in service, although design and operating stresses appeared to be within the material endurance limit. Failure initiated from the spring inside coil surface; final...
Abstract
To samples of helical compression springs were returned to the manufacturer after failing in service well short of the component design life. Spring design specifications required conformance to SAE J157, “Oil Tempered Chromium Silicon Alloy Steel Wire and Springs.” Each spring was installed in a separate heavy truck engine in an application in which spring failure can cause total engine destruction. The springs were composed of chromium-silicon steel, with a hardness ranging from 50 to 54 HRC. Chemical composition and hardness were substantially within specification. Failure initiated from the spring inside coil surface. Examination of the fracture surface using scanning electron microscopy showed no evidence of fatigue. Final fracture occurred in torsion. X-ray diffraction analysis revealed high inner-diameter residual stresses, indicating inadequate stress relief from spring winding. It was concluded that failure initiation was caused by residual stress-driven stress-corrosion cracking, and it was recommended that the vendor provide more effective stress relief.
Book Chapter
Anomalous Fractures of Diesel Engine Bearing Cap Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001377
EISBN: 978-1-62708-215-0
... into the normally sealed bearing cap chamber surrounding the bolt shank. A complete absence of fractures in bolts from one of the two vendors was attributed primarily to surface residual compressive stresses produced on the bolt shank by a finish machining operation after heat treatment. Shot cleaning, with fine...
Abstract
Sudden and unexplained bearing cap bolt fractures were experienced with reduced-shank design bolts fabricated from 42 CrMo 4 steel, quenched and tempered to a nominal hardness of 38 to 40 HRC. Fractographic analysis provided evidence favoring stress-corrosion cracking as the operating transgranular fracture failure mechanism. Water containing H7S was subsequently identified as the aggressive environment that precipitated the fractures in the presence of high tensile stress. This environment was generated by the chemical breakdown of the engine oil additive and moisture ingress into the normally sealed bearing cap chamber surrounding the bolt shank. A complete absence of fractures in bolts from one of the two vendors was attributed primarily to surface residual compressive stresses produced on the bolt shank by a finish machining operation after heat treatment. Shot cleaning, with fine cast shot, produced a surface residual compressive stress, which eliminated stress-corrosion fractures under severe laboratory conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001552
EISBN: 978-1-62708-217-4
.... Aircraft engine manufacturers and aeronautical standards require magnetic particle inspection to detect grinding cracks after reconditioning. Renitriding after any grinding is needed also, regardless of the amount of undersize as it introduces beneficial residual compressive stresses. Chromium...
Abstract
This report covers case histories of failures in fixed-wing light aeroplane and helicopter components. A crankshaft of AISI 4340 Ni-Cr-Mo alloy steel, heat treated and nitrided all over, failed in bending fatigue. The nitrided layer was ground too rapidly causing excessive heat generation which induced grinding cracks and grinding burn. Tensional stresses resulting from grinding developed in a thin surface layer. On another crankshaft, chromium plating introduced undesirable residual tensile stresses. Such plating is an unsatisfactory finish for crankshafts of aircraft engines. Aircraft engine manufacturers and aeronautical standards require magnetic particle inspection to detect grinding cracks after reconditioning. Renitriding after any grinding is needed also, regardless of the amount of undersize as it introduces beneficial residual compressive stresses.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047144
EISBN: 978-1-62708-235-8
... Abstract During autofrettage of a thick-wall steel pressure vessel, a crack developed through the wall of the component. Certain forged pressure vessels are subjected to autofrettage during their manufacture to induce residual compressive stresses at locations where fatigue cracks may initiate...
Abstract
During autofrettage of a thick-wall steel pressure vessel, a crack developed through the wall of the component. Certain forged pressure vessels are subjected to autofrettage during their manufacture to induce residual compressive stresses at locations where fatigue cracks may initiate. The results of the autofrettage process, which creates a state of plastic strain in the material, is an increase in the fatigue life of the component. Analysis (visual inspection, 50x/500x unetched micrographs, and electron microprobe analysis) supports the conclusion that the fracture toughness of the steel was exceeded, and failure through the wall occurred because of the following reason: the high level of iron oxide found is highly abnormal in vacuum-degassed steels. Included matter of this nature (exogenous) most likely resulted from scale worked into the surface during forging. Therefore, it is understandable that failure occurred during autofrettage when the section containing these defects was subjected to plastic strains. Because the inclusions were sizable, hard, and extremely irregular, this region would effect substantial stress concentration. No recommendations were made.
Book Chapter
Fatigue Fracture of a Plunger Shaft That Initiated at a Sharp Fillet
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047100
EISBN: 978-1-62708-233-4
... included increasing the radii of the notch and shaft fillets. If fatigue cracking had continued to be a problem with this component, shot peening of the subject radii would be appropriate. This process produces residual compressive stresses in the surface of the part, thereby retarding initiation...
Abstract
Plunger shafts machined from 4150 steel bar stock were involved in a series of fatigue failures. The fractures consistently occurred at two locations on the shafts: the shaft fillet and either side of a machined notch. The material specification for the shafts required 41xx series steel with a carbon content of 0.38 to 0.53%, a hardness of 35 to 40 HRC for the shaft, and a hardness of 50 to 55 HRC for the notch (which was case hardened). Analysis (visual inspection, chemical analysis, hardness testing, and magnetic particle inspection) supported the conclusions that all the fractures were fatigue-induced failures due to sharp radii in the fillets. The stress-concentrating effects of the fillets caused fatigue cracks to initiate and grow under cyclic loading until the crack depth was critical, causing the shaft to fail and rendering the assembly inoperative. Recommendations included increasing the radii of the notch and shaft fillets. If fatigue cracking had continued to be a problem with this component, shot peening of the subject radii would be appropriate. This process produces residual compressive stresses in the surface of the part, thereby retarding initiation of fatigue cracks.
Book Chapter
Worn Gears for Fuel Injection Pumps
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001189
EISBN: 978-1-62708-218-1
... at the outer part of the teeth. The nitride layer did not stand up to the high and one-sided compressive stress applied in this case and could not prevent pitting. It could even have accelerated the wear by the incipient break down. Gas nitriding at greater depth under application of a suitable special steel...
Abstract
Two fuel injection pump gears that were nitrided in a cyanide bath were submitted by the engine manufacturer for examination of hardness distribution and failure analysis. The gears showed signs of wear after only comparatively brief operation. They were made of normalized unalloyed steel C 45 (Material No. 1.0503) according to DIN 17200 and were normalized. Gear 1 with 1905 h of operation showed at one side pittings on both flanks of the teeth as well as incipient fractures. Gear 2 with 1713 h of operation also showed at one side incipient fractures of the nitride layers at the outer part of the teeth. The nitride layer did not stand up to the high and one-sided compressive stress applied in this case and could not prevent pitting. It could even have accelerated the wear by the incipient break down. Gas nitriding at greater depth under application of a suitable special steel or case hardening would have been better under these circumstances.
Book Chapter
Failure of Valve Spring Because of Grinding and Shot Peening Operations
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048124
EISBN: 978-1-62708-235-8
... it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs. Cracks Galling Orientation Tensile stress Valve spring steel Surface treatment related failures...
Abstract
Presence of transverse marks which were remnant of grinding was indicated in a failed valve spring made from ground rod. The shot-peening pattern was light at this location. A transverse crack was found to grow from one such mark under the influence of local stress fields until it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs.
Image
Photoelastic study of two mating pinion teeth receiving full load. Note the...
Available to PurchasePublished: 01 January 2002
Fig. 10 Photoelastic study of two mating pinion teeth receiving full load. Note the high concentration of compressive stress at the point of contact, the tensile stress at the root radius, and the zero-stress point at the tooth centerline below the root circle.
More
Book Chapter
Use of XRD to Assess Residual Stresses in Steel Springs
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090626
EISBN: 978-1-62708-218-1
... the compressive residual-stress levels in the springs. Recommendation was made to increase the time the spring was shot peened from 12 to 60 min. Automotive components Residual stresses Shot peening Spring steel Surface treatment related failures A steel spring used in an automotive application...
Abstract
A steel spring used in an automotive application suddenly began to fail in the field, although “nothing had changed” in the fabrication process. Fatigue tests using springs fabricated prior to field failures lasted 500,000 cycles to failure, whereas fatigue tests performed on springs fabricated after field failures lasted only 50,000 cycles to failure. It was discovered that the percent coverage of shot peening prior and subsequent to the increase in failure incidence was much less than 100%, with a shot peening time of 12 min. The residual-stress state of “as fabricated” springs in three conditions were evaluated using XRD: springs manufactured prior to failure incidence increase, 12 min peen; springs manufactured following failure incidence increase, 12 min peen; and 60 min peen. The conclusion was that the failure occurred because low peening time significantly decreased the compressive residual-stress levels in the springs. Recommendation was made to increase the time the spring was shot peened from 12 to 60 min.
Book Chapter
Failure of Roller Path Rail
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001465
EISBN: 978-1-62708-231-0
... that the cracking was caused by lateral deflection of the rails under in-service loads. The web of a rail would normally be loaded in compression but, should lateral movements occur, then it would be subjected to bending stresses and fatigue cracks could break out in regions where excessive tensile components...
Abstract
A rail section that failed due to fatigue showed a smooth surface with well-developed conchoidal markings. This indicated successive stages of crack propagation, characteristic of fatigue failure. The crack was one of several which developed in the sections of curved rail which formed the lower roller path on which the superstructure of a walking drag-line excavator slewed. The cracking, which ran horizontally, developed at the junction of the underside of the rail head with the web and originated at surface defects in the form of grooves present on the castings. It was concluded that the cracking was caused by lateral deflection of the rails under in-service loads. The web of a rail would normally be loaded in compression but, should lateral movements occur, then it would be subjected to bending stresses and fatigue cracks could break out in regions where excessive tensile components predominated.
Book Chapter
X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... ), where thousands of grains are sampled in a typical measurement. When the material is in tension, the d -spacing increases in the direction of stress, and when the material is in compression, the d -spacing decreases. The presence of residual stresses in the material produces a shift in the XRD peak...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
1