Skip Nav Destination
Close Modal
Search Results for
Commercial planes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 117 Search Results for
Commercial planes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047169
EISBN: 978-1-62708-217-4
... Abstract The flange on an outboard main-wheel half (aluminum alloy 2014-T6 forging) on a commercial aircraft fractured during takeoff. The failure was discovered later during a routine enroute check. The flange section that broke away was recovered at the airfield from which the plane took off...
Abstract
The flange on an outboard main-wheel half (aluminum alloy 2014-T6 forging) on a commercial aircraft fractured during takeoff. The failure was discovered later during a routine enroute check. The flange section that broke away was recovered at the airfield from which the plane took off and was thus available for examination. Failure occurred after 37 landings (about 298 roll km, or 185 roll miles). Examination of the fracture surfaces revealed that a forging defect was present in the wall of the wheel half. The anodized coating showed distinct twin-parallel and end-grain patterns between which the fracture occurred. The periphery of the defect was the site of several small fatigue cracks that eventually progressed through the remaining wall. Rapid fatigue then progressed circumferentially. Metallographic examination using Keller's reagent showed that the microstructure was normal for aluminum alloy 2014-T6 and the hardness surpassed the minimum hardness required for aluminum alloy 2014-T6. An abrupt change in the direction of grain flow across the fracture plane indicated that the wall had buckled during forging. This evidence supported the conclusion that the wheel half failed in the flange by fatigue as the result of a rather large subsurface forging defect. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001729
EISBN: 978-1-62708-217-4
... Abstract Applying general techniques of failure analysis, the authors deduced that an in-flight explosion brought down a passenger plane. Other evidence pinpointed the location of the explosive, an important factor in establishing responsibility. Commercial planes Explosions Aluminum...
Abstract
Applying general techniques of failure analysis, the authors deduced that an in-flight explosion brought down a passenger plane. Other evidence pinpointed the location of the explosive, an important factor in establishing responsibility.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001587
EISBN: 978-1-62708-217-4
.... This investigation is continuing. Aircraft components Commercial planes Crashes Passenger airline materials (Other, miscellaneous, or unspecified) failure The National Transportation Safety Board simultaneously investigates major accidents in different modes of transportation at any time. The services...
Abstract
On 31 Jan 2000, a McDonnell Douglas MD-83 airplane crashed off the California coast while en route from Puerto Vallarta, Mexico, to San Francisco. Approximately 90% of the aircraft was recovered from a depth of about 700 ft. (213 m). Among the recovered components were parts of the jackscrew assembly, including the jackscrew with an internal torque tube, the gimbal nut, and the upper and lower mechanical stops. The jackscrew was connected to the horizontal stabilizer and controlled its movement. Multiple damage features, indicative of contact with another object, were observed on the upper surface of the lower mechanical stop. Damage to the spline teeth was also observed on the lower mechanical stop. The stripping pattern and offset circumferential marks were consistent with the lower stop being at two or more skewed angles to the splines of the jackscrew during stripping. This investigation is continuing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047125
EISBN: 978-1-62708-217-4
... Abstract A commercial aircraft wheel half, machined from an aluminum alloy 2014 forging that had been heat treated to the T6 temper, was removed from service because a crack was discovered in the area of the grease-dam radius during a routine inspection. Neither the total number of landings nor...
Abstract
A commercial aircraft wheel half, machined from an aluminum alloy 2014 forging that had been heat treated to the T6 temper, was removed from service because a crack was discovered in the area of the grease-dam radius during a routine inspection. Neither the total number of landings nor the roll mileage was reported, but about 300 days had elapsed between the date of manufacture and the date the wheel was removed from service. The analysis (visual inspection, macrographs, micrographs, electron microprobe) supported the conclusions that the wheel half failed by fatigue. The fatigue crack originated at a material imperfection and progressed in more than one plane because changes in the direction of wheel rotation altered the direction of the applied stresses. Recommendations included rewriting the inspection specifications to require sound forgings.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001118
EISBN: 978-1-62708-214-3
... the minimum tolerable defect size was also recommended. Aircraft components Commercial planes Lubrication systems Springs (elastic) Wire 321 UNS S32100 Metalworking-related failures Fatigue fracture Background Two stainless steel springs in oil ring lip seals failed. Applications...
Abstract
Failure of AISI type 321 stainless steel internal springs from newly manufactured lip seals on a shaft between a turbine power unit and a pump in a commercial aircraft secondary unit was investigated. Examination of the coils from two failed springs showed that both had failed by fatigue. The springs contained drawing defects that served as the fatigue crack initiation sites. It was recommended that the wire drawing process be investigated for various levels of steel cleanliness to predict the incidence of drawing defects at the wire surface. Stress analysis to determine the minimum tolerable defect size was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048403
EISBN: 978-1-62708-226-6
... direction. A zone of heavily deformed grains at the fracture edge was revealed by longitudinal metallographic examination. The shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy were discussed for purpose of comparison. Deformation Surcigal implants...
Abstract
During the internal fixation, the type 316LR stainless steel cortical bone screw failed. Extensive spiral deformation was revealed by the fracture surface. Dimple structure characteristic of a ductile failure mode was observed with dimples oriented uniformly in the deformation direction. A zone of heavily deformed grains at the fracture edge was revealed by longitudinal metallographic examination. The shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy were discussed for purpose of comparison.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0090030
EISBN: 978-1-62708-217-4
... Abstract A DC-10 in transit from Denver to Chicago experienced failure of the center engine. The titanium compressor disk burst and severed the hydraulics of the plane. Investigation supports the conclusion that the cause of the disk rupture was the presence of a large fatigue crack near...
Abstract
A DC-10 in transit from Denver to Chicago experienced failure of the center engine. The titanium compressor disk burst and severed the hydraulics of the plane. Investigation supports the conclusion that the cause of the disk rupture was the presence of a large fatigue crack near the bore emanating from a hard alpha (HA) defect. Such defects can result from occasional upsets during the vacuum melting of titanium. These nitrogen-rich alpha titanium anomalies are brittle and often have associated microcracks and microvoids. A probabilistic damage tolerance approach was recommended to address the anomalies, with the objective of enhancing rotor life management practices. The ongoing work involves the use of fracture mechanics and software (called DARWIN.) optimized for damage tolerant design and analysis of metallic structural components.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047165
EISBN: 978-1-62708-217-4
... Abstract Two outboard main-wheel halves (aluminum alloy 2014-T6 forged) from a commercial aircraft were removed from service because of failure. One wheel half was in service for 54 days and had made 130 landings (about 1046 roll km, or 650 roll mi) when crack indications were discovered during...
Abstract
Two outboard main-wheel halves (aluminum alloy 2014-T6 forged) from a commercial aircraft were removed from service because of failure. One wheel half was in service for 54 days and had made 130 landings (about 1046 roll km, or 650 roll mi) when crack indications were discovered during eddy-current testing. The flange on the second wheel half failed after only 31 landings, when about 46 cm (18 in.) of the flange broke off as the aircraft was taxiing. Stains on the fracture surfaces were used to determine when cracking was initiated. The analysis (visual inspection, liquid penetrant inspection, and micrographs with deep etching in aqueous 20% sodium hydroxide) supported the conclusion that failure on both wheel halves was by fatigue caused by a forging defect resulting from abnormal transverse grain flow. The crack in the first wheel half occurred during service, and the surfaces became oxidized. Because the fracture surface of the second wheel half had chromic acid stains, it was obvious that the forging defect was open to the surface during anodizing. No recommendations were made except to notify the manufacturer.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
..., cleavage across a grain on a single plane would be expected to result in smooth fracture surfaces. Such results are sometimes observed in high-purity, single-crystal specimens but are seldom seen in commercial engineering materials. Commercial engineering materials contain both a distribution of inclusions...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001833
EISBN: 978-1-62708-241-9
... Abstract The failure of a boiler operating at 540 °C and 9.4 MPa was investigated by examining material samples from the near-failure region and by thermodynamic analysis. A scanning Auger microprobe, SEM, and commercial thermodynamic software codes were used in the investigation. Results...
Abstract
The failure of a boiler operating at 540 °C and 9.4 MPa was investigated by examining material samples from the near-failure region and by thermodynamic analysis. A scanning Auger microprobe, SEM, and commercial thermodynamic software codes were used in the investigation. Results indicated that the boiler failure was caused by grain-boundary segregation of phosphorous, tin, and nitrogen and the in-service formation of carbide films and granules on the grain boundaries.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... prestrained in torsion to a shear strain of 4.3×. Source (b): Ref 3 In off-axis or bending fractures, the fracture plane is often generally perpendicular with the direction of maximum principal stress, providing information about the type and direction of loading. As the fracture progresses...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... of propagation, crack propagation rate, and decreased strength level. This component failed in fatigue. Crack initiation was on a longitudinal plane visible at the top in a surface hardened region. The crack then propagated on a helical plane in torsion. Note the change in surface roughness as the crack...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... Alternately, cleavage across a grain on a single plane would be expected to result in smooth fracture surfaces. Such results are sometimes observed in high-purity single-crystal specimens but are seldom seen in commercial engineering materials. Commercial engineering materials contain both a distribution...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001852
EISBN: 978-1-62708-241-9
... in out of plane (Y) direction only Thermal Shell-131 and Structural Shell-181 have been employed for nonlinear thermo-structural transient analysis using the ANSYS™ [ 11 ] commercial FEA code. Shell-131 is one of the ANSYS™ elements which is a 3D layered shell element having in-plane and through...
Abstract
A 2–3 mm thick electroformed nickel mold showed early cracking under thermal load cycles. To determine the root cause, investigators obtained monotonic and cyclic properties of electroformed nickel at various temperatures and identified possible fatigue mechanisms. With the help of finite element modeling, they analyzed the material as well as the design and in-service application of the mold. They discovered that overconstraining the mold, while it was in service, caused excessive thermal stresses which accelerated crack initiation and propagation. Investigators also proposed remedies to prevent additional failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... surfaces. Fig. 1 General features of fatigue fractures. Initiation of Fatigue Initiation of fatigue in common components made of commercial alloys occurs at—and is dominated by—material and geometric heterogeneities. Sites fostering fatigue crack initiation include inclusions, second phase...
Abstract
This article commences with a summary of fatigue processes and mechanisms. It focuses on fractography of fatigue. Characteristic fatigue fracture features that can be discerned visually or under low magnification are described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion of fatigue in nonmetals. The article reviews the various macroscopic and microscopic features to characterize the history and growth rate of fatigue in metals. It concludes with a description of fatigue of polymers and composites.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... The failure analyst dealing with general industry will inevitably encounter a fractured, resulfurized steel. They can be of particular interest, since they exhibit some unusual and impressive fracture surfaces when the fracture plane is parallel to the rolling direction of the product. Ductile fractures...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
... surface features associated with the cracking. Both #2 pins exhibited large, woody textured fracture planes oriented perpendicular to the plane between 12 and 6 o'clock on the pin ( Fig. 6 and 7 ). Fig. 6 Woody textured fracture on Crank #1, pin #2 Fig. 7 Woody textured fracture...
Abstract
This case study involves two continuously cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making the steel, forging the shape, and preliminary heat treatment; and (3) a supplier that provided induction hardening, finish machining, and inspection. An independent engineering firm was subsequently involved, but because each party had its own agenda, there was no agreement on the metallurgical source of the failure and thus no continued analysis to pin down and eliminate the root cause.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... (see the Appendix in the article “Mechanisms and Appearances of Ductile and Brittle Fracture in Metals” in this Volume). This section describes the underlying fundamentals and the relevance and necessity of performing proper stress analysis in conducting a failure analysis. Both plane stress...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... or assembly for a given combination of loading and boundary conditions. Although this stress state is unique to a specific coordinate system, most commercially available software packages can extract principal stresses as well as maximum shear stresses. A procedure for calculating the planes on which...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... Initiation of Fatigue Initiation of fatigue in common components made of commercial alloys occurs at—and is dominated by—material and geometric heterogeneities. Sites fostering fatigue crack initiation include inclusions, second-phase particles, voids, machining marks and other surface flaws...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
1