Skip Nav Destination
Close Modal
Search Results for
Cold-worked stainless steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 166 Search Results for
Cold-worked stainless steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 24 Cold-worked type 316LR stainless steel that was fatigued in air at different stress levels. Surfaces of broken specimens at fracture edge are shown. (a) Failure at an applied stress of 330 MPa (47.8 ksi) after 7,682,434 load cycles. Only a few glide systems adjacent to the fracture
More
Image
Published: 01 January 2002
Fig. 21 Fatigue curves of type 316LR stainless steel implant material tested in bending mode. (a) S-N curves for stainless steel in cold-worked and soft condition that was tested in air and aerated lactated Ringer's solution. (b) Fatigue curve for number of cycles to failure as shown in Fig
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048413
EISBN: 978-1-62708-226-6
... surface. Fatigue striations can be seen in the grain at the lower right-hand corner. Other fracture features are crystallographically oriented. (d) Microstructure of cross section reveals that plate was made from cold-worked stainless steel of high microcleanliness. 80x The microstructure...
Abstract
A type 316L stainless steel angled plate failed. The fatigue fracture was found to have occurred at a plate hole. Symmetric cyclic bending forces were revealed by the fatigue damage at the fracture edge at the top surface of the plate. Fatigue striations and slip bands produced on the surface during cyclic loading were observed. The material was showed by the deformation structure to be in the cold-worked condition and was termed to not be the cause of the implant failure.
Image
Published: 01 January 2002
in the grain at the lower right-hand corner. Other fracture features are crystallographically oriented. (d) Microstructure of cross section reveals that plate was made from cold-worked stainless steel of high microcleanliness. 80×
More
Image
in Fatigue Fracture of a Type 316L Stainless Steel Angled Plate
> ASM Failure Analysis Case Histories: Medical and Biomedical Devices
Published: 01 June 2019
in the grain at the lower right-hand corner. Other fracture features are crystallographically oriented. (d) Microstructure of cross section reveals that plate was made from cold-worked stainless steel of high microcleanliness. 80x
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001090
EISBN: 978-1-62708-214-3
.... The damage resulted in high mean tensile stresses upon which were superimposed cyclic stresses, with fatigue failure the final result. Bellows Flexible couplings Cold-worked stainless steel Fatigue fracture Background A double-flanged, 80 mm (3 in.) ID stainless steel flexible pump connector...
Abstract
A stainless steel flexible connector failed after a short period of service. Visual examination of the failed part revealed that a fracture had occurred in the thin-walled stainless steel bellows brazed into the flanges at each end. Surface examination by SEM fractography showed that failure of the bellows occurred via fatigue. The crack in the bellows had widened considerably after the fracture, and the bellows had been severely compressed on the fracture side prior to failure. Based on these observations, it was concluded that bellows had been damaged prior to installation. The damage resulted in high mean tensile stresses upon which were superimposed cyclic stresses, with fatigue failure the final result.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001075
EISBN: 978-1-62708-214-3
... mm (0.10 in.) in diameter. The chemical specification ( Table 1 ) of the Swedish steel from which the wires were made shows that they are basically a type 316L stainless steel. The wires were also specified to be “ 3 4 hard,” an imprecise indication of the amount of cold working required...
Abstract
Several type 316L stainless steel wires in an electrostatic precipitator at a paper plant fractured in an unexpectedly short time. Failed wires were examined using optical and scanning electron microscope, and hardness tests were conducted. Fractography clearly established that fracture was caused by fatigue originating at corrosion pits on the surface of the wire. It was recommended that higher-molybdenum steel in the annealed condition be used to combat pitting corrosion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... measurements show that the ultimate tensile strength, the fatigue strength, and the elastic modulus of cortical bone are about ten times less than that of cold-worked stainless steel. Cancellous bone is spongy and much softer than cortical bone and exhibits mechanical behavior that is different from...
Abstract
This article commences with a description of the prosthetic devices and implants used for internal fixation. It describes the complications related to implants and provides a list of major standards for orthopedic implant materials. The article illustrates the body environment and its interactions with implants. The considerations for designing internal fixation devices are also described. The article analyzes failed internal fixation devices by explaining the failures of implants and prosthetic devices due to implant deficiencies, mechanical or biomechanical conditions, and degradation. Finally, the article discusses the fatigue properties of implant materials and the fractures of total hip joint prostheses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001581
EISBN: 978-1-62708-235-8
... Abstract A heavily worked 304 stainless steel wire basket recrystallized and distorted while in service at 650 deg C (1200 deg F). This case study demonstrates that heavily cold worked austenitic stainless steel components can experience large losses in creep strength, and potentially...
Abstract
A heavily worked 304 stainless steel wire basket recrystallized and distorted while in service at 650 deg C (1200 deg F). This case study demonstrates that heavily cold worked austenitic stainless steel components can experience large losses in creep strength, and potentially structural collapse, under elevated temperature service, even at temperatures more than 300 deg C (540 deg F) below the normal solution annealing temperature. The creep strength of the recrystallized 304/304L steel was more than 1000 times less than that achievable with solution annealed 304H. These observations are consistent with limitations (2000 Addendum to ASME Boiler and Pressure Vessel Code) on the use of cold worked austenitic stainless steels for elevated temperature service.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048407
EISBN: 978-1-62708-226-6
... and fatigue initiation curves indicated that a local stress concentration of 500 to 600 MPa (72 to 87 ksi) was present. This load would still be below the elastic limit of the cold-worked stainless steel. No fatigue cracks were visible on the broad section of the asymmetrically placed hole. Thus, fatigue...
Abstract
The plate used to treat a pseudarthrosis in the proximal femur was investigated for reasons of non-progress of healing. Fatigue cracks were revealed on the top surface of the small section of the plate at the fifth screw hole. The plate was found to be heavily loaded by comparison of intensity of these structures, compared to results of systematic crack-initiation experiments. It was revealed by fatigue bending tests that the fatigue life of plates with asymmetrically arranged holes is at least as long as for plates with holes situated in the center. Fatigue began at the large section only after a fatigue crack begins to propagate into the small plate section. A large secondary crack which had developed parallel to the main crack in the center of the surface was revealed. The fifth hole was situated at the transition between the supporting bone and the defect and hence stress concentration was revealed to be high.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
...-worked condition. It has been established that cold-worked austenitic stainless steels lose their fatigue strength when notched. It has also been established that austenitic stainless steels in the annealed condition are not sensitive to notches. Cold-worked material is very notch sensitive, with notches...
Abstract
Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant. The screws had been used to fasten a seven-hole narrow dynamic compression plate to a patient's spine. The broken screws and screws of the same vintage and source were examined using macrofractography, SEM fractography, and hardness testing. Fractography established that fracture was by fatigue and that the fatigue cracking originated at corrosion pits. Hardness while below specification, still indicated that the screws were in the cold-worked condition and notch sensitive during fatigue loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001345
EISBN: 978-1-62708-215-0
... and crack deposits. Comparison of the microstructure and hardness of the swaged region and unswaged Grade TP 304 stainless steel tube metal indicated that the swaged section was not annealed to reduce the effects of cold working. The high hardness created during swaging increased the stainless steel's...
Abstract
A cold-formed Grade TP 304 stainless steel swaged region of a reheater tube in service for about 8000 hours cracked because of sulfur-induced stress-corrosion cracking (SCC). Cracking initiated from the external surface and a high sulfur content was detected in the outer diameter and crack deposits. Comparison of the microstructure and hardness of the swaged region and unswaged Grade TP 304 stainless steel tube metal indicated that the swaged section was not annealed to reduce the effects of cold working. The high hardness created during swaging increased the stainless steel's susceptibility to sulfur-induced SCC. Because SCC requires water to be present, cracking most likely occurred during downtime or startups. To prevent future failures, the boiler should be kept dry during downtime to avoid formation of sulfur acids, and the swaged sections of the tubes should be heat treated after swaging to reduce or eliminate strain hardening of the metal.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001805
EISBN: 978-1-62708-241-9
... as a possible replacement material for the cable stops. Nitronic 60 is a manganese austenitic stainless steel. The most significant effect of the manganese is an increase in strength [ 3 ] and galling resistance. Another advantage of Nitronic 60 is that it remains fully austenitic at high levels of cold work...
Abstract
Several surgical tool failures were analyzed to understand why they occur and how to prevent them. The study included drills, catheters, and needles subjected to the rigors of biomedical applications such as corrosive environments, high stresses, sterilization, and improper cleaning procedures. Given the extreme conditions to which surgical tools can be exposed, and the potential for misuse, failures are inevitable and systematic methods for analyzing them are necessary to keep them in check.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001360
EISBN: 978-1-62708-215-0
...% reduction of thickness, resulting in a tensile strength that exceeds 1310 MPa (190 ksi). Because the austenitic structure of type 301 stainless steel is metastable, this severe cold working results in the formation of a significant amount of strain-induced martensite. The presence of this martensite...
Abstract
A blade from the engine cooling fan of a pickup truck fractured unexpectedly. The blade was made from type 301 stainless steel in the extra full hard tempered condition with a hardness of 47 HRC. Failure analysis indicated that the blade fractured in three modes: crack initiation, fatigue crack propagation, and final rapid fracture in a ductile manner The fatigue crack originated near a rivet hole.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001397
EISBN: 978-1-62708-235-8
... cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux...
Abstract
Banding wires of the rotor of an 1800 hp motor were renewed following replacement of the banding rings. After about six months of service, a breakdown occurred due to bursting of the banding wires in several places. The 0.064 in. diam wire was nonmagnetic and of the 18/8 Cr-Ni type of austenitic stainless steel. The fractures were short and partially crystalline, with no evidence of slowly developing cracks of the fatigue type. Microscopical examination of sections taken through the fractures showed the cracking to be of the multiple branching type. Because the material was in the heavily cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux during the soldering operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048719
EISBN: 978-1-62708-228-0
... that the fins were cold formed and not subsequently annealed. Cold working without subsequent annealing made the tubes susceptible to SCC because of a high residual-stress level. Fig. 1 Type 304 stainless steel integral-finned tube that cracked from chlorides and high residual stresses. (a) Section...
Abstract
A tubular heat exchanger in a refinery reformer unit leaked after one month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes. Cracks in the tube wall were revealed during examination. Hardness of the tube was found to be 30 HRC at the inside surface and up to 40 HRC at the base of the fin midway between the roots which indicated that the fins were cold formed and not subsequently annealed thus susceptible to SCC because of a high residual stress level. It was revealed by metallographic examination that the fracture was predominantly by transgranular branched cracking and had originated from the inside surface. It was concluded that the tubes failed in SCC caused by chlorides in the presence of high residual stresses. The finned tubes were ordered in the annealed condition as a corrective measure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001348
EISBN: 978-1-62708-215-0
... of chloride SCC in the sensitized HAZ of the weldment. Remedial Action Low-carbon-content steel and a low level of cold work in the dished end could have prevented sensitization in the HAZ and therefore the failure. Use of type 304L stainless steel and dished ends in the solution-annealed condition...
Abstract
Two tanks made of AISI type 304 stainless steel exhibited cracking in the heat-affected zone (HAZ) of the weld that joined the dished end and the shell. The dished ends had been produced by cold deformation. Hardness measurement and simulation tests showed that the deformation was equivalent to a 30% reduction in thickness. Residual stresses were measured at about 135 MPa (20 ksi). The HAZ was found to be sensitized. The tanks had been stored in a coastal atmosphere for about 4 years before installation. The failure was attributed to intergranular stress-corrosion cracking in a sensitized HAZ due to chloride from the environment. Use of low-carbon type AISI 304L was recommended. Minimization of fit-up stresses and covering with polyethylene sheets during storage were also suggested.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001343
EISBN: 978-1-62708-215-0
... was in good metallurgical condition. It was free from sensitization, and there was no significant amount of cold work. All stainless steel components are pickled and passivated as a last step in the manufacturing process. This ensures removal of all surface impurities, especially embedded iron, and also...
Abstract
A section of type 304 stainless steel pipe from a stand by system used for emergency injection of cooling water to a nuclear reactor failed during precommissioning. Leaking occurred in only one spot. Liquid penetrant testing revealed a narrow circumferential crack. Metallographic examination of the cracked area indicated stress-corrosion cracking, which had originated at rusted areas that had formed on longitudinal scratch marks on the outer surface of the pipe. The material was free from sensitization, and there was no significant amount of cold work. It was recommended that the stainless steel be kept rust free.
Image
Published: 15 January 2021
Fig. 16 (a) Extensive crack branching on outside diameter of a stainless steel tube. (b) Transgranular cracks and crack branching of 304 stainless steel. Electrolytic oxalic acid etch. (c) Stress-corrosion cracking in cartridge brass, promoted by residual stress and ammonia. (d) Cold-worked
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0065826
EISBN: 978-1-62708-233-4
... between parallel collector plates. It was determined that the 1008 wires failed because of corrosion fatigue. It was decided to replace all of the wires in the two zones with the highest rates of failure with cold-drawn type 304 austenitic stainless steel wire. These expensive wires, however, failed after...
Abstract
The wires used in a wet precipitator for cleaning the gases coming off a basic oxygen furnace failed. The system consisted of six precipitators, three separate dual units, each composed of four zones. Each zone contained rows of wires (cold drawn AISI 1008 carbon steel) suspended between parallel collector plates. It was determined that the 1008 wires failed because of corrosion fatigue. It was decided to replace all of the wires in the two zones with the highest rates of failure with cold-drawn type 304 austenitic stainless steel wire. These expensive wires, however, failed after a week by transgranular SCC. Annealed type 430 ferritic stainless steel was subsequently suggested to prevent further failures.
1