1-20 of 63 Search Results for

Coefficient of thermal expansion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
... in coefficients of thermal expansion between the polysulfone and the mating steel insert. Coefficient of thermal expansion Insert molding Plastic Polysulfone Brittle fracture Introduction Visual Examination Scanning Electron Microscopy Fourier Transform Infrared Spectroscopy Differential...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048772
EISBN: 978-1-62708-220-4
... in a section through the fireside edge of the fracture surface. Scale was observed over most of the crack path which acted as a stress raiser. The effect of the oxide was magnified during thermal cycles because of differential thermal expansion, with the steel having a greater expansion coefficient than...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
... coefficient of thermal expansion 28Cr3SiNiWMoV (chromium hot-worked steel) Introduction History Visual Observations Chemical Composition Hardness Testing Phase Analysis Metallography Characterization by Eddy Current Method Discussion Conclusion References References 1...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001358
EISBN: 978-1-62708-215-0
..., were removed and prepared for examination. When cracks were discovered visually, the diaphragms were removed from the turbine and inspected using the techniques described below. Difference in coefficients of thermal expansion between the base metal (martensitic) and the weld metal (austenitic...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001110
EISBN: 978-1-62708-214-3
... coefficient of thermal expansion and their lower thermal conductivity, austenitic stainless steels have poor resistance to thermal fatigue. It was recommended that the steam and air be thoroughly mixed before entering the tube so that the mixture has a uniform and somewhat lower temperature...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090451
EISBN: 978-1-62708-218-1
.... Further analysis of the assembly materials using thermomechanical analysis (TMA) produced significantly different results for the PET jacket and the steel housing material. Determination of the coefficients of thermal expansion (CTEs) showed approximately an order of magnitude difference between the two...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... pitting and erosion; mechanical-environment processes, including stress-corrosion cracking (SCC) and hydrogen damage; fracture, including fatigue fracture, thermal fatigue fracture, and stress rupture; and distortion, especially distortion involving thermal-expansion effects or creep. The causes...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001069
EISBN: 978-1-62708-214-3
... layer aids in minimizing the effects of differences of coefficients of thermal expansion between the carbon steel and stainless steel cladding caused by stress-relief annealing. Another solution is to shot-peen the clad surfaces to minimize residual tensile stresses. Metallographic examination...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001570
EISBN: 978-1-62708-220-4
... of holding strength might be aggravated due to the lack of isotropy of titanium, which has a hexagonal crystal structure 3 . The difference in the thermal expansion coefficient of carbon steel and titanium might have played an important part in the loosening of the joint. The thermal expansion...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... Thermomechanical analysis (TMA) Dimensional changes over temperature Coefficient of thermal expansion, material transitions, molded-in stress, chemical compatibility Dynamic mechanical analysis (DMA) Elastic modulus, viscous modulus, tan delta Temperature-dependent behavior, aging/degradation, solid-liquid...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001845
EISBN: 978-1-62708-241-9
... of elasticity 1.30 × 10 5 MPa Fracture load ≥9.0 kN Thermal conductivity 250 W/m-K Sliding load 1.5 kN Coefficient of thermal expansion (20–300 °C) 1.7 × 10 –5 K Tightening torque 28 N m Fig. 1 General view of the steady clamps analyzed: ( a ) views in different directions; ( b...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... failures where adjacent materials differ significantly in composition and coefficient of thermal expansion. Embrittlement may also be the result of metallurgical changes that leave the material relatively ductile and tough at elevated temperature but brittle at or slightly above room temperature...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... to the thermal expansion of the specimen at the current temperature is computed through knowledge of the coefficient of thermal expansion, the temperature, and the gage length. It is then transformed into an equivalent electrical signal to which a signal corresponding to the total mechanical strain is added...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001852
EISBN: 978-1-62708-241-9
... source of thermal loading for thermal shock simulation. For inner surface the convection coefficient h out = 10 W/m 2 °C is applied [ 8 ] while the convection coefficient h in = 306 W/m 2 °C is applied for loading (heating up to 240 °C) the outer surface and h in = 490 W/m 2 °C for unloading...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... of oxide adhesion and integrity can cause mechanical damage via spallation and cracking of the oxide film from cyclic oxidation of chromia and alumina oxides formed on nickel-base alloys due to the mismatch of thermal expansion coefficients between the oxide and the base alloy ( Ref 7 – 9 ). Superalloys...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... temperature is computed through knowledge of the coefficient of thermal expansion, the temperature, and the gage length. It is then transformed into an equivalent electrical signal to which a signal corresponding to the total mechanical strain is added to obtain the total signal corresponding to the desired...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001668
EISBN: 978-1-62708-232-7
.... This did not occur. A check was made on the differences in the thermal coefficients of expansion between the autoclave and bolt material. This analysis indicated an additional load of 3.38 kN would be placed on the torqued bolts. The total torqued bolt load with this small increment is still below...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003542
EISBN: 978-1-62708-180-1
...: the magnitude of the temperature change, the thermal conductivity of the material, the shape and thickness of the piece, the rate of heat transfer between the piece and the quenching medium, and the coefficient of thermal expansion of the material. The fracture markings are no different in thermal-shock...