1-15 of 15 Search Results for

Coal pulverizers

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001620
EISBN: 978-1-62708-229-7
... Abstract Two vertical coal-pulverizer shafts at a coal-fired generation station failed after four to five years in service. One shaft was completely broken, and the other was unbroken but cracked at both ends. shaft material was AISI type 4340 Ni-Cr- Mo alloy steel, with a uniform hardness...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001730
EISBN: 978-1-62708-229-7
... Abstract A shaft can crack twice before it fails. A Detroit electric plant had this experience with one in a coal pulverizer. Because the first crack rewelded partially (by friction) in service, the pulverizer remained serviceable until the second crack developed. Coal pulverizers Shafts...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047813
EISBN: 978-1-62708-229-7
... Abstract After being in service for ten years the ball-and-race coal pulverizer was investigated after noises were noted in it. Its lower grinding ring was attached to the 6150 normalized steel outer main shaft while the upper grinding ring was suspended by springs from a spider attached...
Image
Published: 01 January 2002
Fig. 11 6150 steel coal pulverizer shaft that failed by fatigue. (Left) Section through pulverizer showing the inner main shaft that fractured, repaired itself by friction welding, and fractured a second time. (Right) Photograph of the friction welded surface More
Image
Published: 01 June 2019
Fig. 1 This is a sectional view of the central shaft of a coal pulverizer which failed twice at the indicated area before the mill had to be shut down. The first crack went through the shaft, but it was rewelded by friction due to the spring pressure and the weight of grinding mechanism. More
Image
Published: 01 June 2019
Fig. 1 Two failed coal-pulverizer shafts. The broken shaft is on the right; the cracked shaft is on the left. The arrow indicates the position of the bowl end crack in the cracked shaft. More
Image
Published: 01 June 2019
Fig. 1 6150 steel coal pulverizer shaft that failed by fatigue. (Left) Section through pulverizer showing the inner main shaft that fractured, repaired itself by friction welding, and fractured a second time. (Right) Photograph of the friction welded surface More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001700
EISBN: 978-1-62708-229-7
... Abstract A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
... Abstract A bull gear from a coal pulverizer at a utility failed by rolling-contact fatigue as the result of continual overloading of the gear and a nonuniform, case-hardened surface of the gear teeth. The gear consisted of an AISI 4140 Cr-Mo steel gear ring that was shrunk fit and pinned onto...
Image
Published: 01 June 2019
Fig. 2 Optical micrograph showing example of fretted region on side surface of keyway in cracked coal-pulverizer shaft. u, undamaged area; d, damaged area. The dashed line shows the edge of the damaged area. The arrow “O” indicates the fracture origin, which corresponds to crack “A” of Fig. 3 More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001850
EISBN: 978-1-62708-241-9
... in service by bulging out over a localized area. The bulging occurred at 3 O’clock position with a length, width, and height of 300, 150, and 12 mm, respectively. The location of bulging in the blow pipe was adjacent to the injection lance used for injecting pulverized coal into the furnace ( Fig. 1...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... the temperature has a mixed effect on the erosion rate for ductile materials ( Ref 69 , 81 ). A substantial amount of high-temperature erosion testing has been done in support of the gas turbine and coal gasification industries. This testing has provided a substantial amount of results on temperature effects...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... in support of the gas turbine and coal gasification industries. The testing provided a substantial amount of results on temperature effects. Corrosion can increase or decrease the apparent erosion rate, depending on the rate of oxide or other corrosion product formation and the resistance of the product...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
... or hot water. Power boilers using pulverized coal, fuel oil, or natural gas as the fuel are used in thermal power plants to produce steam for generation of electricity. They are very large in size and are operated at high pressure and temperature in order to produce high-pressure, high-temperature...