1-20 of 20 Search Results for

Clamps, Materials substitution

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0006897
EISBN: 978-1-62708-222-8
... was to change the tail wire material for direct seashore exposure from annealed copper to annealed Monel. Abrasion Clamps, Materials substitution Salt water environment Copper wire Corrosion fatigue The small cable (drop wire) providing service for individual subscribers from the aerial plant...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006900
EISBN: 978-1-62708-225-9
... behavior of type 316 stainless steel. The problem was solved by changing the clamp material from type 301 to type 316 stainless steel and by eliminating the MoS2 antiseize compound. Clamps, Materials Substitution Lubricants Sulfurization 301 UNS S30100 Brittle fracture Hydrogen damage...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001275
EISBN: 978-1-62708-215-0
... that the origin of the failure was a small surface crack in the inner pipe wall produced by the clamping. Fracture mechanics calculations confirmed that the suspected failure process would result in a failure time close to the actual time to failure. It was recommended that: materials be screened...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... is intended simply to illustrate the differences in deformation behavior between two different materials. Practically, one would not substitute stainless steel for low-carbon steel to increase load capacity. One would use a heavier section or perhaps a higher-strength alloy. When loads increase gradually...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... and a hardness of 46 HRC; the clamp at bottom, which deformed, had a mixed structure of ferrite, coarse pearlite, and tempered martensite and a hardness of only 28 HRC. Parts sometimes do not perform to expectations because the material or processing does not conform to requirements, leaving the part...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001575
EISBN: 978-1-62708-217-4
... of Cu alloy (AMS4845) bushings force fit into AA2024-T3 Al alloy spacing elements. It was found that uncontrolled fit interference between the two components had led to Cu alloy overstress. Thermal cycling under operating conditions yielded the material. The dilation was directed inward to the shaft...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001527
EISBN: 978-1-62708-224-2
... drawing and rope manufacture. Wire Grades Lubricants As with all engineering materials, the physical and mechanical properties of steel rope wires are a function of the microstructure, which is a function of processing. Rope wires are very heavily drawn, with severely cold-worked microstructures...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... HRC) for the metal in the core and 370 (28.6 HRC) for the metal near the surface. Electrolytic etching in oxalic acid revealed carbide precipitation at the grain boundaries ( Fig. 8c ) throughout the material but more prevalent in the area of large grains. Annealing a portion of the clamp...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
...Abstract Abstract This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
..., or for finite-life estimates of materials that do, the fatigue strength at a given number of cycles can be substituted for the intercept on the stress-amplitude axis. Examples of the Haigh and constant-life diagrams are provided in Fig. 3 and 4 ( Ref 1 ). Figure 4 is of interest also because of its...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... processing steps are usually best addressed by specialists. Many codes and specifications allow a broad range of materials selections, whereas other codes are very specific and allow few substitutions. What It Must Be After the component is envisioned, the environment is evaluated, and the constraints...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... a detrimental effect on fatigue life. For materials that do not have a fatigue limit or for finite-life assessment of structures, the fatigue strength can be substituted and supplemented by the stress amplitude for a given number of cycles (finite-life fatigue diagram). Variable-Amplitude Loading Because...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... and methods in the analysis of corrosion and wear failures. In addition, investigations of a failure may utilize various techniques to characterize the condition of material. These include: Metallography or microstructural analysis Mechanical testing Chemical analyses (bulk, local, surface...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
..., such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums. chains cranes failed shafts hooks lifting equipment wire rope LIFTING EQUIPMENT is used for raising, lowering, and transporting materials, parts, and equipment, generally...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... rubberStyrenated polyester 3 Rigid chains PIs (ladder molecules) A Crystalline domains in a viscous network PETTerylene (Dacron)Cellulose acetate B Moderate cross linking, with some crystallinity Chloroprene rubberPolyisoprene C Rigid chains, partly cross linked Heat-resistant materials D...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... rubberStyrenated polyester 3 Rigid chains PIs (ladder molecules) A Crystalline domains in a viscous network PETTerylene (Dacron)Cellulose acetate B Moderate cross linking, with some crystallinity Chloroprene rubberPolyisoprene C Rigid chains, partly cross linked Heat-resistant materials D...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... toughness, grain size Loading direction may show failure was secondary or impact induced Low temperatures Cyclic stress exceeded the endurance limit of the material Check for proper strength, surface finish, assembly, and operation Prior damage by mechanical or corrosion modes may have...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
.... 23 Schematic of FZG back-to-back gear scuffing test setup. Source: Ref 135 Fig. 1 Steps leading to adhesive wear. (a) Microjoints. (b) Deformation of asperities and removal of surface films. (c) Shearing and material transfer. Source: Ref 15 Fig. 2 Example of adhesive wear...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... at the weld toe Cracks—hot or cold, longitudinal or transverse, crater and at weld toe Gas porosity Arc strike Spatter Backing piece left on: failure to remove material placed at the root of a weld joint to support molten weld metal Subsurface features that are causes for rejection...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
..., penetrate through voids and interfaces and change thermomechanical properties, increasing the TBC susceptibility to spalling. Adapted from Ref 186 Fig. 28 Schematic illustration of the dissolution-reprecipitation mechanism in yttria-stabilized zirconia (YSZ), wherein the coating material...