1-20 of 208

Search Results for Chlorides, environment

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001397
EISBN: 978-1-62708-235-8
... cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047606
EISBN: 978-1-62708-228-0
... adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible after welding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048691
EISBN: 978-1-62708-220-4
... failures of both 300-and 400-series stainless steels can occur after brief exposures to chloride environments. In this case, failure was caused by chlorides in the water used to flush the tubes before service. Recommendations Pitting could be reduced or eliminated by avoiding the use of brackish...
Image
Published: 01 January 2002
Fig. 1 Branching cracks typical of stress-corrosion cracking (SCC). (a) Chloride SCC of type 304 stainless steel base metal and type 308 weld metal in an aqueous chloride environment at 95 °C (200 °F). Cracks are branching and transgranular. (b) Caustic SCC in the HAZ of a type 316L stainless More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... ) they are susceptible to localized corrosion in chloride environments, and thus are not recommended for use in marine applications ( 3 ). The stud hardness was 98 Rockwell B. The standard specification for stainless steel metric studs is ASTM F738M, and this particular sample would be designated Property Class F1-60...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001559
EISBN: 978-1-62708-229-7
... of environment, elevated temperatures, and tensile stresses on unsensitized stainless steels are complex. The critical concentration of chloride ions necessary for SCC can vary from thousands of ppm at ambient temperatures to less than 1 ppm at 500°F. Chloride SCC is not normally considered a problem below 200°F...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001508
EISBN: 978-1-62708-236-5
... Part Since the cracking was found in supposedly brand new shields which should not have been exposed to a chloride rich environment for a significant amount of time, the material, processing, and packaging all became suspect. The bulk material composition was analyzed by inductively coupled...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001423
EISBN: 978-1-62708-233-4
... the cylindrical body section and thus gained access to the rim to result in cracking on the external surface. The immunity of austenitic stainless steels to stress corrosion cracking cannot be guaranteed in a chloride environment, particularly when operating temperatures are such as could lead to evaporative...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001342
EISBN: 978-1-62708-215-0
.... Checking the test fluid for chloride and removing all fluids after hydrostatic testing were recommended to prevent further failure. Chlorides, environment 321 UNS S32100 Stress-corrosion cracking Background A type 321 stainless steel downcomer expansion joint ( Fig. 1 ) was found...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001528
EISBN: 978-1-62708-219-8
... is normally associated with aqueous chloride environments. Fig. 4 SEM photomicrograph showing stress corrosion cracking facets, step-like features analogous to cleavage facets, on the tank fracture surface. (1500×) EDS elemental chemical analysis ( Fig. 5 ) of the uncleaned fracture surfaces...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001770
EISBN: 978-1-62708-241-9
... in marine environments which are well known to induce serious stress corrosion cracking (SCC) problems due to the presence of chloride ions [ 2 – 4 ]. Stress corrosion cracking is a form of environmentally assisted cracking (EAC) that is of great significance to the chemical, oil, and gas industries. SCC...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001320
EISBN: 978-1-62708-215-0
... monitoring and maintenance to ensure that another low-pH excursion does not occur. Boiler tubes Chlorides, environment ASME SA210-C Pitting corrosion Background Severe pitting was found on the internal surface of waterwall tubes at a south-eastern cogeneration facility. The areas most...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048814
EISBN: 978-1-62708-229-7
... by series of controlled crack-propagation-rate stress-corrosion tests that A302, grade B, steel was susceptible to transgranular stress-corrosion attack in constant extension rate testing with as low as 1 ppm chloride present. It was recommended to maintain the coolant environment low in oxygen and chloride...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0001667
EISBN: 978-1-62708-225-9
... shutdown periods at ambient temperatures. The corrosive environment contained trace hydrogen chloride and acetic acid vapors as well as calcium chloride if leaks occurred. The exact service life was unknown. The bolt surfaces showed extensive corrosion deposits. Cracks had initiated at both the thread...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091336
EISBN: 978-1-62708-234-1
... Abstract A type 304 austenitic stainless steel tube (0.008 max C, 18.00 to 20.00 Cr, 2.00 max Mn, 8.00 to 10.50 Ni) was found to be corroded. The tube was part of a piping system, not yet placed in service, that was exposed to an outdoor marine environment containing chlorides. As part...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001745
EISBN: 978-1-62708-217-4
... Abstract A 2000-T6 aluminum alloy bracket failed in a coastal environment because corrosive chlorides got between the bracket and attachment bolt. The material used for the part was susceptible to stress corrosion under the service conditions. Cracking may have been aggravated by galvanic...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001824
EISBN: 978-1-62708-241-9
... to be the primary failure mechanism in the areas of the bolts directly exposed to the working environment. Corrosion damage on surfaces facing away from the work environment was caused primarily by chloride stress-corrosion cracking, aided by loose fitting threads. Thread gaps constitute a crevice where...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
..., specific i njurious ions in the environment, such as chloride or hydroxyl ions, are associated with causing SCC of a given metal/alloy. The ions responsible for SCC need not be present in high concentrations, although a minimum local concentration is required. In some cases, SCC occurs only within...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... in a given environment. Stress-corrosion cracks ordinarily undergo extensive branching and proceed in a general direction perpendicular to the stresses contributing to their initiation and propagation. Figure 1(a) shows transgranular, branched chloride SCC in a specimen of type 304 stainless steel...