Skip Nav Destination
Close Modal
Search Results for
Chemical cleaning
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 297 Search Results for
Chemical cleaning
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091318
EISBN: 978-1-62708-217-4
... the specified procedure for chemical cleaning of the tanks in preparation for potable water storage. The sodium hypochlorite sterilizing solution used was three times the prescribed strength, and the process exposed the bottom of the tanks to hypochlorite solution that had collected near the outlet...
Abstract
Two freshwater tanks (0.81 mm (0.032 in) thick, type 321 stainless steel) were removed from aircraft service because of leakage due to pitting and rusting on the bottoms of the tanks. One tank had been in service for 321 h, the other for 10 h. There had been departures from the specified procedure for chemical cleaning of the tanks in preparation for potable water storage. The sodium hypochlorite sterilizing solution used was three times the prescribed strength, and the process exposed the bottom of the tanks to hypochlorite solution that had collected near the outlet. Investigation (visual inspection, 95x unetched images, chemical testing with a 5% salt spray, chemical testing with sodium hypochlorite at three strength levels, samples were also pickled in an aqueous solution containing 15 vol% concentrated nitric acid (HNO3) and 3 vol% concentrated hydrofluoric acid (HF) and were then immersed in the three sodium hypochlorite solutions for several days) supported the conclusion that failure of the stainless steel tanks by chloride-induced pitting resulted from using an overly strong hypochlorite solution for sterilization and neglecting to rinse the tanks promptly afterward. Recommendations included revising directions for sterilization and rinsing.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001277
EISBN: 978-1-62708-215-0
... corrosion through galvanic effects and can promote hydrogen damage. Ultrasonic testing was recommended to locate tubes with severe gouging and corrosion, which are suspect locations for hydrogen damage. The source of the copper should be identified and future chemical cleaning of the boiler should address...
Abstract
Waterwall tube failure samples removed from a coal- and oil-fired boiler in service for 12 years exhibited localized underdeposit corrosion and hydrogen damage. EDS and XRD revealed that bulk internal deposits collected from the tubes contained metallic copper which can accelerate corrosion through galvanic effects and can promote hydrogen damage. Ultrasonic testing was recommended to locate tubes with severe gouging and corrosion, which are suspect locations for hydrogen damage. The source of the copper should be identified and future chemical cleaning of the boiler should address its presence in the waterwall tubes.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090881
EISBN: 978-1-62708-229-7
... the conclusion that that the deposits formed at locations that experienced steam blanketing or dryout at the higher levels of the steam generators. Recommendations included steam generator water-chemistry controls, chemical cleaning, and reduction of the primary reactor coolant system temperature. Electric...
Abstract
A power plant using two steam generators (vertical U-tube and shell heat exchangers, approximately 21 m (68 ft) high with a steam drum diameter of 6 m (20 ft)) experienced a steam generator tube rupture. Each steam generator contained 11,012 Inconel alloy 600 (nickel-base alloy) tubes measuring 19 mm OD, nominal wall thickness of 1.0 mm (0.042 in.), and average length of 18 m (57.75 ft). The original operating temperature of the reactor coolant was 328 deg C (621 deg F). A tube removal effort was conducted following the tube rupture event. Investigation (visual inspection, SEM fractographs, and micrographs) showed evidence of IGSCC initiating at the OD and IGA under ridgelike deposits that were analyzed and found to be slightly alkaline to very alkaline (caustic) in nature. Crack oxide analysis indicated sulfate levels in excess of expected values. The analysis supported the conclusion that that the deposits formed at locations that experienced steam blanketing or dryout at the higher levels of the steam generators. Recommendations included steam generator water-chemistry controls, chemical cleaning, and reduction of the primary reactor coolant system temperature.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001320
EISBN: 978-1-62708-215-0
.... Acidic conditions may have formed during a low-pH excursion that reportedly occurred several years prior. To prevent future failures, severely damaged tubing must be replaced. Internal deposit buildup must be removed by chemical cleaning to prevent further pitting. Water quality needs continued...
Abstract
Severe pitting was found on the internal surfaces of SA-210 Grade C waterwall tubing of a coal-fired boiler at a cogeneration facility. Metallographic examination showed the pits to be elliptical, having an undercut morphology with supersurface extensions,. a type of pitting characteristic of acidic attack. Energy-dispersive X-ray spectroscope revealed the presence of chlorine in the pit deposits, indicating that the pitting was promoted by underdeposit chloride attack. The presence of copper in deposits on the internal surface of the tubing may have acted as a secondary factor. Acidic conditions may have formed during a low-pH excursion that reportedly occurred several years prior. To prevent future failures, severely damaged tubing must be replaced. Internal deposit buildup must be removed by chemical cleaning to prevent further pitting. Water quality needs continued monitoring and maintenance to ensure that another low-pH excursion does not occur.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001044
EISBN: 978-1-62708-214-3
..., interviews with personnel who worked on the nuclear plant during construction, interviews with the cogeneration plant startup personnel, and interviews with the chemical cleaning field service engineers. This history is detailed below in the Discussion. Pertinent Specifications The condenser had four...
Abstract
Inhibited admiralty brass (UNS C44300) condenser tubes used in a natural-gas-fired cogeneration plant failed during testing. Two samples, one from a leaking tube and the other from an on leaking tube, were examined. Chemical analyses were conducted on the tubes and corrosion deposits. Stress-corrosion cracking was shown to have caused the failure. The most probable corrosive was ammonia or an ammonium compound in the presence of oxygen and water. All of the tubes were replaced.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046227
EISBN: 978-1-62708-217-4
... and careful inspection following alkaline-etch cleaning, to be scheduled before release of the floor panels for painting. Aircraft components Chemical milling Floors Fuel tanks 7178-T6 UNS A97178 Fatigue fracture The floors of the fuel tanks in two aircraft failed almost identically after...
Abstract
The floors (fabricated from aluminum alloy 7178-T6 sheet, with portions of the sheet chemically milled to reduce thickness) of the fuel tanks in two aircraft failed almost identically after 1076 and 1323 h of service, respectively. Failure in both tanks occurred in the rear chemically milled section of the floor. An alkaline etch-type cleaner was used on the panels before chemical milling and before painting. Various tests and measurements indicated that the aluminum alloy used for the fuel-tank floors conformed to the specifications for 7178-T6. Low power magnification, fractographs taken with a scanning electron, and optical microscopic examination of the milled sections revealed extensive pitting on both sides of the floors. Evidence found supports the conclusions that the floors failed by fatigue cracking that initiated near the center of the fuel-tank floor and ultimately propagated as rapid ductile-overload fractures. The fatigue cracks originated in pits on the fuel-cell side of the tank floors. The pits were attributed to attack caused by the alkaline-etch cleaning process. Recommendations included monitoring of the alkaline-etch cleaning to avoid the formation of pits and careful inspection following alkaline-etch cleaning, to be scheduled before release of the floor panels for painting.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
... and measured 1.5 m (58 in.) in diameter and 8.5 m (28 ft) in length. Investigation (visual inspection, chemical analysis, radiography, dye-penetrant inspection, and hydrostatic testing of all E-Brite welds, 4x images, 100x/200x images electrolytically etched with 10% oxalic acid, and V-notch Charpy testing...
Abstract
A nozzle in a wastewater vaporizer began leaking after approximately three years of service with acetic and formic acid wastewaters at 105 deg C (225 deg F) and 414 kPa (60 psig). The shell of the vessel was weld fabricated from 6.4 mm (0.25 in.) E-Brite stainless steel plate and measured 1.5 m (58 in.) in diameter and 8.5 m (28 ft) in length. Investigation (visual inspection, chemical analysis, radiography, dye-penetrant inspection, and hydrostatic testing of all E-Brite welds, 4x images, 100x/200x images electrolytically etched with 10% oxalic acid, and V-notch Charpy testing) supported the conclusion that failure of the nozzle weld was the result of intergranular corrosion caused by the pickup of interstitial elements and subsequent precipitation of chromium carbides and nitrides. Carbon pickup was believed to have been caused by inadequate joint cleaning prior to welding. The increase in the weld nitrogen level was a direct result of inadequate argon gas shielding of the molten weld puddle. Two areas of inadequate shielding were identified: improper gas flow rate for a 19 mm (0.75 in.) diam gas lens nozzle, and contamination of the manifold gas system. Recommendations included changes in the cleaning and welding process.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090965
EISBN: 978-1-62708-221-1
.... Investigation (visual inspection, chemical analysis, unetched 30x images, and 2% nital etched 30x images) was difficult because the fracture surface of the frame section was obliterated by postfracture corrosion. Repeated attempts at cleaning using progressively stronger chemicals revealed that no telltale...
Abstract
The upper frame from a large cone crusher failed in severe service after an unspecified service duration. The ductile iron casting was identified as grade 80-55-06, signifying minimum properties of 552 MPa (80 ksi) tensile strength, 379 MPa (55 ksi) yield strength, and 6% elongation. Investigation (visual inspection, chemical analysis, unetched 30x images, and 2% nital etched 30x images) was difficult because the fracture surface of the frame section was obliterated by postfracture corrosion. Repeated attempts at cleaning using progressively stronger chemicals revealed that no telltale fracture morphology remained. However, the investigation supported the conclusion that the crusher frame failed via brittle overload fracture, likely due to excessive service stresses and substandard mechanical properties. Recommendations included additional quality-control measures to provide better spheroidal graphite morphology at the frame surface.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047749
EISBN: 978-1-62708-235-8
... surface of the tube were identified as fluorides from the brazing flux by chemical analysis. The nature of the crack, potential for corrosion due to residual fluorides and residual swaging stress in the tube prior to brazing, confirmed that failure of the tube end was due to stress-corrosion cracking...
Abstract
A type 321 stainless steel (AMS 5570) pressure-tube assembly that contained a brazed reinforcing liner leaked during a pressure test. Fluorescent liquid-penetrant inspection revealed a circumferential crack extended approximately 180 deg around the tube parallel to the fillet of the brazed joint. The presence of multiple origin cracks was indicated on the inside surface of a fractured portion of the crack surface. The cracks had originated adjacent to the braze joining the tube and the reinforcing liner and propagated through the wall to the outer surface. The residues on the inner surface of the tube were identified as fluorides from the brazing flux by chemical analysis. The nature of the crack, potential for corrosion due to residual fluorides and residual swaging stress in the tube prior to brazing, confirmed that failure of the tube end was due to stress-corrosion cracking. Stress relief treatment of tube before brazing and immediate cleaning of brazing residual fluorides was recommended to avoid failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049796
EISBN: 978-1-62708-235-8
... Abstract Problems with materials compatibility were encountered in pyrotechnically driven devices used in a number of ordnance applications requiring rapid mechanical actuation. A fine bridgewire is located in contact with the chemical pyrotechnic, and the charge is ignited by electrical...
Abstract
Problems with materials compatibility were encountered in pyrotechnically driven devices used in a number of ordnance applications requiring rapid mechanical actuation. A fine bridgewire is located in contact with the chemical pyrotechnic, and the charge is ignited by electrical heating of the bridgewire. Evidence of severe corrosion was revealed on examination of the nickel-chromium-iron alloy bridgewire and the nickel-iron alloy pins. Metallic elements in the pin or bridgewire and substantial amounts of chlorine were detected from the x-ray spectra. Morphological changes indicative of decomposition and dissolution were revealed to have occurred in regions of the pyrotechnic that had been in contact with the bridgewire and pin surfaces by examination of the titanium-potassium perchlorate (Ti-K-Cl-O4) pyrotechnic. Substantial amounts of water were revealed to be associated with the surfaces of the titanium particles in the pyrotechnic by nuclear magnetic resonance. It was proposed that the chlorine-containing residue combined with the water from the pyrotechnic to form a thin aqueous film corroding the bridgewire and pins. A new cleaning procedure was implemented for the glass headers to eliminate the chloride contamination and a vacuum drying procedure was instituted for the pyrotechnic.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0045911
EISBN: 978-1-62708-230-3
... (790 deg F). Metallographic sections, energy-dispersive x-ray spectra, chemical analyses, tensile tests, and Auger microscope analyses showed the failed bellows met the specifications for the material. However, investigation also showed entire oxide thickness was contaminated with relatively large...
Abstract
Within the first few months of operation of an 8 km (5 mile) long 455 mm (18 in.) diam high-pressure steam line between a coal-fired electricity-generating plant and a paper mill, several of the Inconel 600 bellows failed. The steam line operated at 6030 kPa (875 psi) and 420 deg C (790 deg F). Metallographic sections, energy-dispersive x-ray spectra, chemical analyses, tensile tests, and Auger microscope analyses showed the failed bellows met the specifications for the material. However, investigation also showed entire oxide thickness was contaminated with relatively large amounts of sodium, calcium, potassium, aluminum, and sulfur, alkali, alkali earth, and other contaminants that completely permeated even the thin oxides on the fracture surfaces. Additional investigation of the purity of the steam itself as reported by the power plant showed that corrosion and cracks were ultimately caused by the steam. While under normal operation, the steam's purity posed no problem to the material, during boiler cleaning operations, the generating plant had allowed contamination to get into the steam line.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091699
EISBN: 978-1-62708-219-8
... Abstract Eddy-current inspection was performed on a leaking absorber bundle in an absorption air-conditioning unit. The inspection revealed crack-like indications in approximately 50% of the tubes. The tube material was phosphorus-deoxidized copper. Investigation (visual inspection, chemical...
Abstract
Eddy-current inspection was performed on a leaking absorber bundle in an absorption air-conditioning unit. The inspection revealed crack-like indications in approximately 50% of the tubes. The tube material was phosphorus-deoxidized copper. Investigation (visual inspection, chemical analysis, 0.75x images, 2x macrographs after light acid cleaning to remove corrosion product, and 75x micrographs) supported the conclusion that the absorber tubes failed by SCC initiated by ammonia contamination in the lithium bromide solution. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001014
EISBN: 978-1-62708-223-5
... the exteriors of the parts were clean and smooth, and there was evidence of a case. Examination of the flat surfaces of the parts revealed surface cracking where actual failure had not occurred. Chemical analysis showed the material to be a low-alloy carburizing steel. The microstructure was compatible...
Abstract
A tool used to stretch reinforcement wires in prestressed concrete failed. All eight individual jaws were broken. Visual examination of the fracture surfaces indicated that about half of the broken parts had a partially dendritic appearance. Further, fracture surfaces near the exteriors of the parts were clean and smooth, and there was evidence of a case. Examination of the flat surfaces of the parts revealed surface cracking where actual failure had not occurred. Chemical analysis showed the material to be a low-alloy carburizing steel. The microstructure was compatible with a steel which is cast, carburized, quenched, and tempered. The structure was generally satisfactory, except for the presence of severe shrinkage porosity. It was concluded that the presence of shrinkage porosity in critical areas was the primary cause of fracture. Extremely high hardness indicating a lack of adequate tempering was the secondary cause.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001377
EISBN: 978-1-62708-215-0
... transgranular fracture failure mechanism. Water containing H7S was subsequently identified as the aggressive environment that precipitated the fractures in the presence of high tensile stress. This environment was generated by the chemical breakdown of the engine oil additive and moisture ingress...
Abstract
Sudden and unexplained bearing cap bolt fractures were experienced with reduced-shank design bolts fabricated from 42 CrMo 4 steel, quenched and tempered to a nominal hardness of 38 to 40 HRC. Fractographic analysis provided evidence favoring stress-corrosion cracking as the operating transgranular fracture failure mechanism. Water containing H7S was subsequently identified as the aggressive environment that precipitated the fractures in the presence of high tensile stress. This environment was generated by the chemical breakdown of the engine oil additive and moisture ingress into the normally sealed bearing cap chamber surrounding the bolt shank. A complete absence of fractures in bolts from one of the two vendors was attributed primarily to surface residual compressive stresses produced on the bolt shank by a finish machining operation after heat treatment. Shot cleaning, with fine cast shot, produced a surface residual compressive stress, which eliminated stress-corrosion fractures under severe laboratory conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091631
EISBN: 978-1-62708-229-7
... Abstract A steam-condensate line (type 316 stainless steel tubing) began leaking after five to six years in service. The line carried steam condensate at 120 deg C (250 deg F) with a two hour heat-up/cool-down cycle. No chemical treatment had been given to either the condensate or the boiler...
Abstract
A steam-condensate line (type 316 stainless steel tubing) began leaking after five to six years in service. The line carried steam condensate at 120 deg C (250 deg F) with a two hour heat-up/cool-down cycle. No chemical treatment had been given to either the condensate or the boiler water. To check for chlorides, the inside of the tubing was rinsed with distilled water, and the rinse water was collected in a clean beaker. A few drops of silver nitrate solution were added to the rinse water, which clouded slightly because of the formation of insoluble silver chloride. This and additional investigation (visual inspection, and 250x micrograph etched with aqua regia) supported the conclusion that the tubing failed by chloride SCC. Chlorides in the steam condensate also caused corrosion of the inner surface of the tubing. Stress was produced when the tubing was bent during installation. Recommendations included providing water treatment to remove chlorides from the system. Continuous flow should be maintained throughout the entire tubing system to prevent concentration of chlorides. No chloride-containing water should be permitted to remain in the system during shutdown periods, and bending of tubing during installation should be avoided to reduce residual stress.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0048303
EISBN: 978-1-62708-236-5
...)(20 + log t ) for SA-213, grade T-22. Source: Ref 1 . T °F + 460 = T °R To use Fig. 2 , the tube metal temperature and stress must be estimated. Service or operational time—113,000 h in this case—can be obtained from plant records. If chemical cleaning had been performed...
Abstract
A tube in a radiant superheater, the boiler of which is coal fired, failed by creep after 17 years of service. The failed tube was specified to be made of ASME SA-213, grade T-22. Measurable swelling of the tube diameter by about 2.4 mm and tube wastage caused by corrosion or erosion were observed. Log stress versus Larson-Miller Parameter (LMP) plots were produced to assess the remaining life of the superheater. It was revealed that the estimated operating temperature of 1060 deg F was higher than the estimated design temperature of 1000 deg F and that the tube wastage had increased the actual operating stress. Tube wastage and high operating temperatures hastened the failure. A better understanding of the material condition of this superheater was recommended to verify all the suspect hot tubes.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001045
EISBN: 978-1-62708-214-3
... for chemical analysis, the composition of samples was determined after removing all the corrosion-affected inner layer by sandblasting and chemical cleaning. The composition was 64.1% Cu and 35.9% Zn (by difference); lead, iron, arsenic, antimony, and phosphorus were all less than 0.001%. Discussion...
Abstract
A failure analysis was conducted on brass alloy 270 heat exchanger tubes that were pulled from a unit used to cool oil for the speed regulators and thrust bearings of a hydroelectric power plant. The tubes began to leak after approximately 5.5 years of service. Macrophotography and scanning electron microscopy were used to examine samples from the tubes. An energy-dispersive electron microprobe analysis was carried out to evaluate the zinc distribution. Results showed that the failure was due to dezincification. Replacement of the tubes with new tubes fabricated from a dezincification-resistant alloy was recommended.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
..., composition of fuel, amount of excess combustion air, type and amount of water-conditioning chemicals added, type and amount of contaminants in condensate and make-up feedwater, frequency and methods of cleaning fire-side and water-side surfaces of steam generators, materials specified as to alloy...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091528
EISBN: 978-1-62708-229-7
... of a steam line to feed concentrated caustic during chemical cleaning, the preventive measure may be no more complicated than exclusion of the corrodent from that region of the system. In many instances, however, reduction of the level of residual stress is the most effective means of minimizing...
Abstract
A 150 mm (6 in.) schedule 80S type 304 stainless steel pipe (11 mm, or 0.432 in., wall thickness), which had served as an equalizer line in the primary loop of a pressurized-water reactor, was found to contain several circumferential cracks 50 to 100 mm (2 to 4 in.) long. Two of these cracks, which had penetrated the pipe wall, were responsible for leaks detected in a hydrostatic test performed during a general inspection after seven years of service. Investigation (visual inspection, visual and ultrasonic weld examination, water analysis, and chemical analysis) supported the conclusion that the failure was caused by SCC due to stress, sensitization, and environment. Recommendations included replacing all pipe sections and installing them using low-heat-input, multiple-pass welding procedures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001305
EISBN: 978-1-62708-215-0
... fracture. No defects were found that could have contributed to failure. The wheel conformed to the chemical, microstructural, and hardness requirements for class A wheels. Failure was attributed to repeated severe heating and cooling of the rim and flange due to brake locking or misapplication of the hand...
Abstract
An ASTM A 504 carbon steel railway car wheel that was used on a train in a metropolitan railway system failed during service, causing derailment. The wheel was completely fractured from rim to hub. Macrofractography of the fracture surface showed road grime, indicating that the crack had existed for a considerable time prior to derailment and initiated in the flange. Failure propagated from the flange across the rim and down the plate to the bore of the hub. Two zones that exhibited definite signs of heating were observed. The fracture initiation site was typical of fatigue fracture. No defects were found that could have contributed to failure. The wheel conformed to the chemical, microstructural, and hardness requirements for class A wheels. Failure was attributed to repeated severe heating and cooling of the rim and flange due to brake locking or misapplication of the hand brake. It was recommended that the brake system on the car be examined and replaced if necessary.
1