Skip Nav Destination
Close Modal
Search Results for
Chemical analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1157 Search Results for
Chemical analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... Abstract Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... handling wavelength-dispersive spectrometry CHEMICAL ANALYSIS is often a useful tool for failure analysis. There are two main categories of chemical analysis that are often used by failure analysts: Bulk composition evaluation: often performed in order to determine whether the correct alloy...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Image
in Cavitation Erosion of a Zirconium Pump Impeller in an Aqueous Hydrochloric Acid Service Environment
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 11 EDS chemical analysis of the black deposit within a linear defect reveals high carbon from the graphite casting mold.
More
Image
in Cavitation Erosion of a Zirconium Pump Impeller in an Aqueous Hydrochloric Acid Service Environment
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 12 EDS chemical analysis reveals iron-rich debris in the open-mouth portion of a linear defect.
More
Image
Published: 01 June 2019
Fig. 8 A 2,000× SEM of a pit. Chemical analysis showed high chlorine levels associated with the pitting. The pit walls are highly cracked.
More
Image
in Failure of a Stainless Steel Holding Tank
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 6 EDS chemical analysis of the black foam insulation reveals a high level of chlorine. Sample is sputter-coated with gold.
More
Image
in Failure Analysis of a Jet Engine Gearbox Drive Gearshaft Ball Bearing
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
... in properties over many temperatures. There are numerous ASTM documents that are germane to thermal analysis. Typical documents are cited in Ref 39 , 40 . Acknowledgment This article was revised from “ Physical, Chemical, and Thermal Analysis of Thermoplastic Resins ,” Characterization and Failure...
Abstract
This article addresses some established protocols for characterizing thermoplastics and whether they are homogeneous resins, alloyed, or blended compositions or highly modified thermoplastic composites. It begins with a discussion on characterizing mechanical, rheological, and thermal properties of polymer. This is followed by a section describing molecular weight determination using viscosity measurements. Next, the article discusses the use of cone and plate and parallel plate geometries in melt rheology. It then reviews the processes involved in the analysis of thermoplastic resins by chromatography. Finally, the article covers three operations of thermoanalysis, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001713
EISBN: 978-1-62708-220-4
... factors contributing to the accident were identified by the EPA and OSHA. In an effort to avoid other accidents with these chemicals, below we summarize three of the root causes given in the EPA/OSHA report as contributing to the accident. An inadequate hazards analysis was conducted...
Abstract
On 21 April 1995, the contents of a large blender (6 cu m) reacted and caused an explosion that killed and injured a number of workers at a plant in Lodi, NJ. A mixture of sodium hydrosulfite and aluminum powder was being mixed at the time of the accident. This report focuses on evaluations of the blender to determine if material or mechanical failures were the cause of the accident. The results indicate that the mixing vessel was metallurgically sound and did not contribute to the initiation of the failure. However, the vessel was not designed for mixing chemicals that must be isolated from water and excessive heat. Water leaking into the vessel through a graphite seal may have initiated the reactions that caused the accident.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.9781627082204
EISBN: 978-1-62708-220-4
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... Abstract Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046044
EISBN: 978-1-62708-235-8
.... Chemical analysis of the cracked metal showed a slightly higher level of carbon than in the component that did not crack. X-ray diffraction studies of material from the fractured dome showed a very low level of retained austenite, and chemical analysis showed a slightly higher content of carbon...
Abstract
A rocket-motor case made of consumable-electrode vacuum arc remelted D-6ac alloy steel failed during hydrostatic proof-pressure testing. Close visual examination, magnetic-particle inspection, and hardness tests showed cracks that appeared to have occurred after austenitizing but before tempering. Microscopic examinations of ethereal picral etched sections indicated that the cracks appeared before or during the final tempering phase of the heat treatment and that cracking had occurred while the steel was in the as-quenched condition, before its 315 deg C (600 deg F) snap temper. Chemical analysis of the cracked metal showed a slightly higher level of carbon than in the component that did not crack. X-ray diffraction studies of material from the fractured dome showed a very low level of retained austenite, and chemical analysis showed a slightly higher content of carbon in the metal of the three cracked components. Bend tests verified the conclusion that the most likely mechanism of delayed quench cracking was isothermal transformation of retained austenite to martensite under the influence of residual quenching stresses. Recommendations included modifying the quenching portion of the heat-treating cycle and tempering in the salt pot used for quenching, immediately after quenching.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048767
EISBN: 978-1-62708-235-8
... were revealed at the edges of the weld metal. It was revealed by chemical analysis of this band that a stainless steel filler metal had been used which produced mixed composition at the weld boundaries. The plating material was revealed to be nickel by chemical analysis. It was concluded that clapper...
Abstract
The clapper in a 250 mm diam disk valve (made from ASTM A36 steel, stress relieved and cadmium plated) fractured at the welded joint between the clapper and a 20 mm diam support rod (also made of same material). The valve contained a stream of gas consisting of 55% H2S, 39% CO2, 5% H2, and 1% hydrocarbons at 40 deg C and 55 kPa during operation. Voids on the fracture surface and evidence of incomplete weld penetration were revealed by examination. Brittle fracture was indicated by the overall appearance through some fatigue beach marks were observed. Very narrow bands of high hardness were revealed at the edges of the weld metal. It was revealed by chemical analysis of this band that a stainless steel filler metal had been used which produced mixed composition at the weld boundaries. The plating material was revealed to be nickel by chemical analysis. It was concluded that clapper failed by fatigue and brittle fracture because it was welded with an incorrect filler metal. A clapper assembly was welded with a low-carbon steel filler metal, then cadmium plated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001146
EISBN: 978-1-62708-229-7
... Abstract A metallurgical failure analysis was performed on pieces of the cracked vent header pipe from the Edwin I. Hatch Unit 2 Nuclear power plant. The analysis consisted of optical microscopy, chemical analysis, mechanical Charpy impact testing, and fractography. It was found...
Abstract
A metallurgical failure analysis was performed on pieces of the cracked vent header pipe from the Edwin I. Hatch Unit 2 Nuclear power plant. The analysis consisted of optical microscopy, chemical analysis, mechanical Charpy impact testing, and fractography. It was found that the material of the vent header met the mechanical and chemical properties of ASTM A516 Grade 70 carbon-manganese steel material and microstructures were consistent with this material. Fracture faces of the cracked pipe were predominantly brittle in appearance with no evidence of fatigue contribution. The NDTT (Nil ductility Transition Temperature) for this material was approximately -51 deg C (-60 deg F). The fact that the material's NDTT was significantly out of the normal operating range of the pipe suggested an impingement of low temperature nitrogen (caused by a faulty torus inerting system) induced a thermal shock in the pipe which, when cooled below its NDTT, cracked in a brittle manner.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001510
EISBN: 978-1-62708-217-4
... chemical analysis, physical and mechanical evaluation. Stereomicroscopic examination of the opened crack fracture surface revealed one large fan-shaped region that had propagated radially through the thickness of the material from two distinct origin areas on the internal diam of the grip. Higher...
Abstract
Proper stress analysis during component design is imperative for accurate life and performance prediction. The total stress on a part is comprised of the applied design stress and any residual stress that may exist due to forming or machining operations. Stress-corrosion cracking may be defined as the spontaneous failure of a metal resulting from the combined effects of a corrosive environment and the effective component of tensile stress acting on the structure. However, because of the orientation dependence in aluminum, it is the residual stress occurring in the most susceptible direction that must be considered of primary importance in material selection for design configuration. A Navy UH-1N helicopter main rotor blade grip manufactured from a 2014-T6 aluminum alloy forging failed because of a design flaw that left a high residual tensile stress along the short transverse plane; this in turn provided the necessary condition for stress corrosion to initiate. A complete failure investigation to ascertain the exact cause of the failure was conducted utilizing stereomicroscopic examination, scanning electron microscopy, metallographic inspection and interpretation, energy-dispersive chemical analysis, physical and mechanical evaluation. Stereomicroscopic examination of the opened crack fracture surface revealed one large fan-shaped region that had propagated radially through the thickness of the material from two distinct origin areas on the internal diam of the grip. Higher magnification inspection near the origin area revealed a flat, wood-like appearance. Scanning electron microscopy divulged the presence of substantial mud cracking and intergranular separation on the fracture surface. Metallographic examination revealed intergranular cracking and substantial leaf separation along the elongated grains parallel to the fracture surface. Chemical composition and hardness requirements were found to be as specified. The blade grip failed due to a stress corrosion crack which initiated on the inner diam and propagated in the short transverse direction through the thickness of the component. The high residual tensile stress in the part resulting from the forging and exposed after machining of the inner diam, combined with the presence of moisture, provided the necessary conditions to facilitate crack initiation and propagation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046926
EISBN: 978-1-62708-232-7
..., visually inspected, and rotated 120 deg every three weeks to ensure that no single location was overheated for a prolonged period of time. Analysis (visual inspection, chemical analysis, metallographic examination, and x-ray analysis, 60x micrograph etched with 10% oxalic acid) supported the conclusion...
Abstract
Over a period of about one year, three RA 330 alloy salt pots from a single heat-treating plant were submitted to failure analysis. All of the pots, which had 9.5 mm thick walls, were used primarily to contain neutral salts at temperatures from about 815 to 900 deg C (1500 to 1650 deg F). However, some cyaniding was also performed in these pots, which, when not in use, were idled at 760 deg C (1400 deg F). It was reported that sludge was removed from the bottom of the pots once a day. Normal pot life varied from about 6 to 20 months. The pots were removed from the furnace, visually inspected, and rotated 120 deg every three weeks to ensure that no single location was overheated for a prolonged period of time. Analysis (visual inspection, chemical analysis, metallographic examination, and x-ray analysis, 60x micrograph etched with 10% oxalic acid) supported the conclusion that the cause of failure of each of the three salt pots was severe intergranular corrosion accompanied by substantial chromium depletion. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001043
EISBN: 978-1-62708-214-3
..., whereas the opposite side exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide...
Abstract
A 76 mm (3 in.) type 304 stainless steel tube that was used as a heat shield and water nozzle support in a hydrogen gas plant quench pot failed in a brittle manner. Visual examination of a sample from the failed tube showed that one lip of the section was eroded from service failure, whereas the opposite side exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide formations in a martensite matrix and outlining of prior-austenite grains by a network of fine, white lines. These features indicated that the material had been transformed by carburization by the impinging gas. The outer surface exhibited a heavy scale deposit and numerous cracks that originated at the surface of the tube. The cracks were covered with scale, indicating that thermal fatigue (heat cracking) had occurred. Chemical analysis confirmed that the original material was type 304 stainless steel that had been through-carburized by the formation of an endothermic gas mixture. It was recommended that plant startup and shutdown procedures be modified to reduce or eliminate the presence of the carburizing gas mixture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001162
EISBN: 978-1-62708-220-4
... and the ductile, and chemical analysis showed a higher level of aluminum in the brittle specimens. Failure obviously occurred due to the high material aluminum content that increased hardness which then caused embrittlement at the surface which led to cracks or fracture on bending. Since no explanation of how...
Abstract
Some 99.90 pure tin tubes (0.15 mm thick) used for packaging a chemical compound cracked on bending and underwent brittle fracture prior to filling, while others remained ductile and showed no sign of failure. Examination showed that specimens prepared by mechanical methods such as electrolytic and hand polishing and the vibration method resulted in poor edge and crack edge definition due to material thickness. Etching experiments involved a grain surface attack and hence produced a rather strong surface relief from which the grain boundary cracks could again not clearly be differentiated. The sections were therefore examined unetched in polarized light. The microstructure of the cracked tubes was shown to have much smaller grains than the ductile and showed cracks from the surface down along the grain boundaries. Material hardness also differed between the unusable tubes and the ductile, and chemical analysis showed a higher level of aluminum in the brittle specimens. Failure obviously occurred due to the high material aluminum content that increased hardness which then caused embrittlement at the surface which led to cracks or fracture on bending. Since no explanation of how the aluminum entered the tin was available, no recommendations could be made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090965
EISBN: 978-1-62708-221-1
.... Investigation (visual inspection, chemical analysis, unetched 30x images, and 2% nital etched 30x images) was difficult because the fracture surface of the frame section was obliterated by postfracture corrosion. Repeated attempts at cleaning using progressively stronger chemicals revealed that no telltale...
Abstract
The upper frame from a large cone crusher failed in severe service after an unspecified service duration. The ductile iron casting was identified as grade 80-55-06, signifying minimum properties of 552 MPa (80 ksi) tensile strength, 379 MPa (55 ksi) yield strength, and 6% elongation. Investigation (visual inspection, chemical analysis, unetched 30x images, and 2% nital etched 30x images) was difficult because the fracture surface of the frame section was obliterated by postfracture corrosion. Repeated attempts at cleaning using progressively stronger chemicals revealed that no telltale fracture morphology remained. However, the investigation supported the conclusion that the crusher frame failed via brittle overload fracture, likely due to excessive service stresses and substandard mechanical properties. Recommendations included additional quality-control measures to provide better spheroidal graphite morphology at the frame surface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
.... A failure analysis was requested to determine the cause of fracture. Two hooks were submitted for examination. Analysis (visual inspection, 2.7x light fractography, chemical analysis, 110x SEM fractography, 27x/110x/215x nital-etched micrographs) supported the conclusions that this component fractured...
Abstract
A ductile iron T-hook hook was reported to have fractured in service. It was further reported that the hook had been subjected to a load that did not exceed 5900 kg (13,000 lb) at the time of fracture. No information was provided regarding the type of metal used to manufacture the hook. A failure analysis was requested to determine the cause of fracture. Two hooks were submitted for examination. Analysis (visual inspection, 2.7x light fractography, chemical analysis, 110x SEM fractography, 27x/110x/215x nital-etched micrographs) supported the conclusions that this component fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress that exceeded 5900 kg (13,000 lb), the observations made in this investigation suggested that either the load was underestimated or that the indicated load was applied at a more rapid rate (perhaps with a jerk), which would tend to increase the effective force of the load.
1