Skip Nav Destination
Close Modal
By
David Arencón Osuna, Marcelo de Sousa Pais Antunes, Vera Cristina de Redondo Realinho, José Ignacio Velasco
Search Results for
Charpy energy correlations
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 38 Search Results for
Charpy energy correlations
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001004
EISBN: 978-1-62708-229-7
..., however, were observed. Impact Energy Tests A selection of the studs were impact tested and it was clear that the RTE studs exhibited low room temperature charpy energies which varied from 5 to about 30 joules while a series of other non-embrittled CrMoV studs ( 14 ) showed energies in excess...
Abstract
The results of a failure analysis of a series of Cr-Mo-V steel turbine studs which had experienced a service lifetime of some 50,000 h are described. It was observed that certain studs suffered complete fracture while others showed significant defects located at the first stress bearing thread. Crack extension was the result of marked creep embrittlement and reverse temper embrittlement (RTE). Selected approaches were examined to assess the effects of RTE on the material toughness of selected studs. It was observed that Auger electron microscopy results which indicated the extent of grain boundary phosphorus segregation exhibited a good relationship with ambient temperature Charpy data. The electrochemical polarization kinetic reactivation, EPR, approach, however, proved disappointing in that the overlapping scatter in the minimum current density, Ir, for an embrittled and a non-embrittled material was such that no clear decision of the toughness properties was possible by this approach. The initial results obtained from small punch testing showed good agreement with other reported data and could be related to the FATT. Indeed, this small punch test, combined with a miniature sample sampling method, represents an attractive approach to the toughness assessment of critical power plant components.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001135
EISBN: 978-1-62708-219-8
... , 5 . Figure 4 shows the amount of energy needed to fracture versus the testing temperature. Figure 5 is a plot of dynamic fracture toughness versus temperature for both sets of samples. The non-banded samples show an increase in toughness over the banded cores. Fig. 4 Charpy impact energy...
Abstract
In 1979, during a routine bridge inspection, a fatigue crack was discovered in the top flange plate of one tie girder in a tied arch bridge crossing the Mississippi River. Metallographic analysis indicated a banding or segregation problem in the middle of the plate, where the carbon content was twice what it should have been. Based on this and results of ultrasonic testing, which revealed that the banding occurred in 24-ft lengths, it was decided to close the bridge and replace the defective steel. The steel used in the construction of this bridge was specified as ASTM A441, commonly used in structural applications. Testing showed an increase in hardness and weight percent carbon and manganese in the banded region. Further testing revealed that the area containing the segregation and coarse grain structure had a lower than expected toughness and a transition temperature 90 deg F higher than specified by the ASTM standards. The fatigue crack growth rate through this area was much faster than expected. All of these property changes resulted from increased carbon levels, higher yield strength, and larger than normal grain size.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001347
EISBN: 978-1-62708-215-0
... 0.25 max 0.25 max … 0.08 max 0.02 min Charpy V-notch impact properties for tank fragments Table 2 Charpy V-notch impact properties for tank fragments Fragment Charpy V-notch impact strength, N . m (ft . lbf) −45.6 °C (−50 °F) −28 °C (27 °F) 17-shell, 27 40.7 (30) 58.3...
Abstract
A 127 cu m (4,480 cu ft) pressurized railroad tank car burst catastrophically. The railroad tank was approximately 18 m (59 ft) long (from 2:1 elliptical heads), 3 m (10 ft) in OD, and 16 mm (0.63 in.) thick. The chemical and material properties of the tank were to comply with AAR M-128 Grade B. As a result of the explosive failure of the tank car, fragments were ejected from the central region of the car between the support trucks from ground zero to a maximum of approximately 195 m (640 ft). The mode of failure was a brittle fracture originating at a preexisting lamination and crack in the tank wall adjacent to the tank nozzle. The mechanism of failure was overpressurization of the railroad tank car caused by a chemical reaction of the butadiene contents. The interrelationship of the mode, mechanism, and consequences of failure is reviewed to reconstruct the sequence of events that led up to the breach of the railroad tank car. Means to prevent similar reoccurrences are discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... (unnotched) tension specimen loaded slowly and under controlled conditions to fracture. Notch toughness represents the ability of a material to absorb energy and is determined under impact loading in the presence of a notch. Notch toughness is measured by using a variety of specimens, such as the Charpy V...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... to absorb energy during high strain rate loading (i.e., impact). The Charpy V-Notch (CVN) impact test has become the standard for this property. A plot of CVN absorbed energy versus test temperature for carbon or alloy steel will generally have a sigmoidal shape exhibiting a lower shelf energy at low...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006919
EISBN: 978-1-62708-395-9
... of precracked Charpy specimens for polyvinyl chloride Fig. 32 Applicability and limitations of force-based fracture mechanics analysis for high loading rates (impact) Fig. 33 Schematic of the dynamic key curve method Fig. 34 Determination of the loading-rate dependence of time...
Abstract
This article reviews the impact response of plastic components and the various methods used to evaluate it.. It describes the effects of loading rate on polymer deformation and the influence of temperature and strain rate on failure mode. It discusses the advantages and limitations of standard impact tests, the use of puncture tests for assessing material behavior under extreme strain, and the application of fracture mechanics for analyzing impact failures. It also develops and demonstrates the theory involved in the design and analysis of thin-walled, injection-molded plastic components.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... as the impact point ( Fig. 17b ). Because the pendulum hits the unnotched side of the sample in the Charpy test, Charpy values may provide much greater impact strength values than Izod test values. However, the two measurements can be correlated ( Ref 12 ). The Izod test is usually done on 3.2 mm (0.125...
Abstract
This article briefly introduces some commonly used methods for mechanical testing. It describes the test methods and provides comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are also briefly described. The article discusses the processes involved in the short-term and long-term tensile testing of plastics. Information on the strength/modulus and deflection tests, impact toughness, hardness testing, and fatigue testing of plastics is also provided. The article describes tension testing of elastomers and fibers. It covers two basic methods to test the mechanical properties of fibers, namely the single-filament tension test and the tensile test of a yarn or a group of fibers.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001272
EISBN: 978-1-62708-215-0
... required to force the curved panel to fit the larger diameter. The temperature stress was later estimated to be about 28 MPa (4 ksi). Subsize Charpy specimens were removed from panels in the second and third bins. There was considerable variation from panel to panel in energy absorption. Data from one...
Abstract
A 22 m (72 ft) diameter filled grain storage bin made from a 0.2% carbon steel collapsed at a temperature of −1 to 4 deg C (30 to 40 deg F). Failure analysis indicated that fracture occurred in a two-step process: first downward, by ductile failure of small ligament from a bolt hole near the bottom of the tank to create a crack 25 mm (1 in.) long, and then upward, by brittle fracture through successive 1.2 m (4ft) wide sheets of ASTM A446 material. Site investigation showed that the concrete base pad was not level. Chemical analysis indicated that the material had a high nitrogen content (0.020%). The allowable stress based on yield was estimated using four different design criteria. Correlation among those results was poor. The different criteria indicated that the material was loaded from the maximum allowable to approximately 30% less than allowable. Nevertheless, at this stress level, fracture mechanics indicated that the 25 mm (1 in.) starter crack exceeded or was very near the critical crack length for the material. Additional factors not taken into account in the design equations included cold work from a hole punching operation, thread imprinting in bolt holes, and an additional hoop stress created by forcing an incorrectly formed panel to fit the pad base radius. These factors increased the nominal design stress to a sufficiently large value to cause the critical crack length to be exceeded.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
... of brittle solids is related to the roughness of the fracture surface, because a rougher fracture surface has a higher surface area. The fracture surface tortuosity is a measure of crack deflection, and it may be useful for correlations with crack growth resistance, toughness, and impact energy. The extent...
Abstract
The quantitative characterization of fracture surface geometry, that is, quantitative fractography, can provide useful information regarding the microstructural features and failure mechanisms that govern material fracture. This article is devoted to the fractographic techniques that are based on fracture profilometry. This is followed by a section describing the methods based on scanning electron microscope fractography. The article also addresses procedures for three-dimensional fracture surface reconstruction. In each case, sufficient methodological details, governing equations, and practical examples are provided.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... the material is stressed above or below any ductile-to-brittle transition temperature below which relatively low-energy fractures can occur. Other degradation mechanisms, such as corrosion and oxidation; stress corrosion; erosion from flowing gases, liquids, and solids; hydrogen damage; creep and stress...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... is the specific surface energy of the crack faces, c is the crack length, and a is the interatomic spacing of the fracture planes. This expression becomes equal to the Griffith criterion when the crack-tip radius becomes equal to the interplanar spacing. Single-Crystal Cleavage Models It is best...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... essential for the formation of a metallurgical bond between the solder and the workpiece, good wetting helps the solder material fill joint gaps (or plated through-holes in the context of a PCB). Wetting depends on several factors, including but not limited to the surface tension/surface energy of joint...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... E is the elastic modulus, ρ is the crack tip radius, γ is the specific surface energy of the crack faces, c is the crack length, and a is the interatomic spacing of the fracture planes. This expression becomes equal to the Griffith criterion when the crack tip radius becomes equal...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... increase above 540 °C (1000 °F), arriving at a maximum just below the Ac 1 transformation temperature. At the Ac 1 temperature (which is approximately 705°C, or 1300 °F), carbon or carbide begins to go into solution in the ferrite. Examination of the carbide microstructure, the correlation to stress...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006910
EISBN: 978-1-62708-395-9
... 17281, which resembles an instrumented Charpy-like test, albeit using SENB or CT specimens, yields an energy release rate given by the equation: (Eq 4) G C = U p BWϕ ( a W ) The geometric factor ϕ can be determined either numerically or experimentally ( Ref 53...
Abstract
There are many different types of polymeric materials, ranging from glassy to semicrystalline polymers and even blends. Their mechanical properties range from pure elastic with very high strains to fracture (elastomers) to almost pure linear elastic (Hookian behavior) with low strains to fracture (glassy polymers). This article provides an overview of historical development of fracture behavior in polymers. It discusses the processes involved in three fracture test methods for polymers, namely linear elastic fracture mechanics, elastic-plastic fracture mechanics, and post-yield fracture mechanics.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... mode Energy-dispersive x-ray spectroscopy (EDS) Elemental concentrations Material composition, fillers, additives Nuclear magnetic resonance (NMR) Molecular bond structure Material identification Mass spectroscopy (MS) Molecular structure Material identification, additives X-ray...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
... of an epoxy at three heating rates. Source: Ref 71 Fig. 29 Conversion in percent versus temperature for epoxy-amine from differential scanning calorimetry multiple heating-rate measurements. In the insert, apparent activation energy versus conversion. Source: Ref 74 Fig. 30 Master cure...
Abstract
This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured thermosetting resins as well as the curing process. Then, the techniques to characterize the physical properties of cured thermosets and composites are presented. Several examples of stress-strain curves are shown for thermosets and thermoplastic polymers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
... are also anisotropic. It has been shown that the fracture energy of nylon 11 varies with respect to the flow direction in injection-molded samples ( Ref 34 ). Notched Charpy impact tests at room temperature at a constant set hammer speed indicated that fracture occurs in stable and unstable propagation...
Abstract
Engineering plastics, as a general class of materials, are prone to the development of internal stresses which arise during processing or during servicing when parts are exposed to environments that impose deformation and/or temperature extremes. Thermal stresses are largely a consequence of high coefficients of thermal expansion and low thermal diffusivities. Although time-consuming techniques can be used to analyze thermal stresses, several useful qualitative tests are described in this article. The classification of internal stresses in plastic parts is covered. The article describes the effects of low thermal diffusivity and high thermal expansion properties, and the variation of mechanical properties with temperature. It discusses the combined effects of thermal stresses and orientation that result from processing conditions. The article also describes the effect of aging on properties of plastics. It explains the use of high-modulus graphite fibers in amorphous polymers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006944
EISBN: 978-1-62708-395-9
... of polymers is usually performed by rapid or high strain-rate loading. Two impact tests commonly employed for polymer materials are the Izod test and the Charpy test, which is also generally used for metallic materials. Impact strength is calculated by dividing the impact energy in Joules by the cross...
Abstract
The discussion on the fracture of solid materials, both metals and polymers, customarily begins with a presentation of the stress-strain behavior and of how various conditions such as temperature and strain-rate affect the mechanisms of deformation and fracture. This article describes crazing and fracture in polymeric materials, with a review of the behavior of the elastic modulus as a function of temperature or time parameters, emphasizing the importance of the viscoelastic nature of their deformation and fracture. The discussion covers the behavior of polymers under stress, provides information on ductile and brittle behaviors, and describes craze initiation in polymers and crack formation and fracture by crazing. Macroscopic permanent deformation of polymeric materials caused by shear-yielding and crazing, which eventually can result in fracture and failure, is also covered.
1