1-20 of 98 Search Results for

Centrifuges

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001470
EISBN: 978-1-62708-220-4
... Abstract One 49-in. impeller of a two-stage centrifugal air compressor disrupted without warning, causing extensive damage to the casings, the second impeller, and the driving gear box. Prior to the mishap, the machine had run normally, with no indications of abnormal vibration, temperature...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001458
EISBN: 978-1-62708-220-4
... Abstract Two cases of failure of centrifuge baskets were investigated. The first involved a centrifuge running at approximately 1000 rpm. The basket was constructed from a perforated sheet of stainless steel rolled into a cylinder and joined by a single vee longitudinal weld. Detailed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001136
EISBN: 978-1-62708-229-7
... Abstract A fracture mechanics based failure analysis and life prediction of a large centrifugal fan made from low-carbon, medium-strength steel was undertaken following shortcomings in attempts to explain its fatigue life from start stop cycles alone. Measurements of the fracture toughness...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001399
EISBN: 978-1-62708-220-4
... Abstract An air compressor was installed at a chemical plant in which nitric acid was produced by burning ammonia with air. It was a 5000 hp, 5-stage centrifugal machine running at 6000 rpm, compressing air to 5 atm. Failure of the first stage impeller occurred due to a segment from the back...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001364
EISBN: 978-1-62708-215-0
... Abstract An investigation of the impeller and deposit samples from a centrifugal compressor revealed that an aluminum IR-12 refrigerant reaction had occurred, causing extensive damage to the second-stage impeller and contaminating the internal compressor components. The spherical surface...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0089617
EISBN: 978-1-62708-232-7
... Abstract A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001072
EISBN: 978-1-62708-214-3
... and the cover. Applications The impeller was from a multistage, centrifugal unit designed to carry moist air. The unit was operated in a chemical plant. Specimen Selection Because corrosion rendered the larger crack faces useless for scanning electron microscopy (SEM) with respect to fractography...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001442
EISBN: 978-1-62708-221-1
Image
Published: 01 January 2002
Fig. 9 Wear on suction surface of centrifugal pump impeller by cavitation and solid particle erosion. Courtesy of CETIM More
Image
Published: 01 January 2002
Fig. 10 Wear on pressure surface of centrifugal pump impeller by cavitation and solid particle erosion. Courtesy of CETIM More
Image
Published: 01 January 2002
Fig. 30 Permanent mold of 4130 steel for centrifugal casting of gray- and ductile-iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which More
Image
Published: 01 December 1993
Fig. 1 Metallic pieces from the centrifugal compressor as received for analysis More
Image
Published: 30 August 2021
Fig. 10 Permanent mold of 4130 steel for centrifugal casting of gray and ductile iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which More
Image
Published: 01 June 2019
Fig. 1 Permanent mold of 4130 steel for centrifugal casting of gray- and ductile-iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which More
Image
Published: 15 January 2021
Fig. 35 Centrifugal pump shaft (Example 21). (a) Image of the rough pump shaft fracture surface. (b) Electron image showing intergranular fracture surface. Original magnification: 274×. (c) Shaft cross section showing branching intergranular cracking of brittle fracture. Original magnification More
Image
Published: 01 December 2019
Fig. 1 ( a ) Fractured centrifugal pump axis. ( b ) Fracture surface: macroscopic overview. Fracture origin indicated More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001170
EISBN: 978-1-62708-225-9
... Abstract The lock ring of a centrifuge drum was fractured after one year's operation. The ring, with a trapezoidal thread on the inside, was made of steel with approximately 0.5%C-1.3%Mn-1.1%Cr and was hardened and tempered to 105 kp/sq mm strength at 11% elongation (d10). It fractured radially...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001420
EISBN: 978-1-62708-220-4
... steel shell and two end plates. It was designed to spin at 2200 rpm, using centrifugal force to expel liquids through nearly 3000 drilled holes in the shell wall. Investigators found that the shell separated completely from the bottom plate. The top plate, though it cracked radially, remained attached...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... Abstract This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast...