Skip Nav Destination
Close Modal
Search Results for
Cements
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 56 Search Results for
Cements
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 15 January 2021
Fig. 6 Illustration of fretting wear damage between a bone cement and a metallic femoral stem. Adapted from Ref 36
More
Image
in Failure of Nickel-Aluminum-Bronze Hydraulic Couplings, with Comments on General Procedures for Failure Analysis
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 13 TEM replica of a fracture surface of WC-3Co cemented carbide exhibiting Wallner lines (arrowed) 8
More
Image
in Broken Back up Rolls from a Broad Strip Mill
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 8 Primary grain boundary with precipitates of ledeburite and secondary cementite. Etched in picral. 200 ×
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048423
EISBN: 978-1-62708-226-6
... Abstract The bone cement failed at the distal end of the prosthesis stem of femoral head prosthesis six months after implantation. A small indentation on the lateral contour of the stem was visible where the stem had broken. The degree of loosening (gap between the lateral stem contour...
Abstract
The bone cement failed at the distal end of the prosthesis stem of femoral head prosthesis six months after implantation. A small indentation on the lateral contour of the stem was visible where the stem had broken. The degree of loosening (gap between the lateral stem contour and the bone or cement) and implant loading was revealed by the dislocation of fragments of the prosthesis. Secondary cracks that had originated at the lateral aspect of the stem were revealed by metallographic examination of a section parallel to the stem surface and perpendicular to the fracture surface of the distal fragment. Gas pores are apparent in the grain and at the grain boundaries were revealed by a transverse section. Fine parallel line structures that run diagonally through the fractograph may be slip traces were revealed by scanning electron microscopy. One of the cracks was revealed to have propagated through a larger gas pore by a ruptured gas pore. The stresses created through the fatigue process activated glide systems which served the formation of secondary cracks along glide planes.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046998
EISBN: 978-1-62708-232-7
... with mixed acids, metallographic examination, and chemical analysis) supported the conclusions that the premature failure of the tube by perforation at the hearth level resulted from (1) corrosion caused by sulfur contamination from the refractory cement in contact with the tube and (2) severe local...
Abstract
One of 14 vertical radiant tubes (RA 333 alloy) in a heat-treating furnace failed when a hole about 5 x 12.5 cm (2 x 5 in.) corroded completely through the tube wall. The tube measured 183 cm (72 in.) in length and 8.9 cm (3 in.) in OD and had a wall thickness of about 3 mm (0.120 in.). Failure occurred where the tube passed through the refractory hearth (floor) of the furnace. Although the furnace atmosphere was neutral with respect to the work, it had a carburizing potential relative to the radiant tubes. Analysis (visual inspection, 250x spectroscopic examination of specimens etched with mixed acids, metallographic examination, and chemical analysis) supported the conclusions that the premature failure of the tube by perforation at the hearth level resulted from (1) corrosion caused by sulfur contamination from the refractory cement in contact with the tube and (2) severe local overheating at the same location. Recommendations included replacing all tubes using a low sulfur refractory cement in installation and controlling burner positioning and regulation more closely to avoid excessive heat input at the hearth level.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001702
EISBN: 978-1-62708-219-8
... survey, potential and corrosion mapping, concrete chemistry, and concrete physical properties. The major cause of corrosion damage appears to have been the presence of both pre-existing and environmentally-delivered chlorides in the concrete. Bridges Cements Chlorides Support beams Steel beam...
Abstract
The Rocky Point Viaduct, located near Port Orford, OR, was replaced after only 40 years of service. A beam from the original viaduct was studied in detail to determine the mechanisms contributing to severe corrosion damage to the structure. Results are presented from the delamination survey, potential and corrosion mapping, concrete chemistry, and concrete physical properties. The major cause of corrosion damage appears to have been the presence of both pre-existing and environmentally-delivered chlorides in the concrete.
Image
in Fatigue Fracture of Titanium Alloy Knee Prostheses
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 2 Bottom of failed tibial tray. Fracture emanates from cruciate-preserving notch and propagates to elliptical hole used to implant to bone with bone cement.
More
Image
in Corrosion Failure of the Rocky Point Viaduct
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 10 Polarized-light image (50×) of red-hued hydrated iron oxide (dark patches) which has invaded the cement and aggregate fractures and pushed the aggregate together.
More
Image
Published: 15 May 2022
Fig. 60 ToF-SIMS negative ion spectrum of a mixture of the antibiotic Tobramycin sulfate and Simplex-P bone cement, which is a mixture of polymethyl methacrylate and BaSO 4 . Courtesy of EAG Laboratories, Sunnyvale, CA
More
Image
Published: 15 January 2021
and bone cement in a physiological environment. Source: Ref 14 . Reprinted with permission from Elsevier
More
Image
Published: 01 January 2002
fracture, and a fracture of bone cement at the end of the stem, respectively. (b) Fracture of prosthesis stem. Wear at end of stem (arrow) indicates stem movement due to loosening. (c) Wear at end of stem. (d) Close-up view of stem end showing material transfer and layering from wear. Corrosion signs
More
Image
in Broken Stem of Femoral Head Component of Total Hip Prosthesis Made From Cast Cobalt-Base Alloy
> ASM Failure Analysis Case Histories: Medical and Biomedical Devices
Published: 01 June 2019
fracture, and a fracture of bone cement at the end of the stem, respectively. (b) Fracture of prosthesis stem. Wear at end of stem (arrow) indicates stem movement due to loosening. (c) Wear at end of stem. (d) Close-up view of stem end showing material transfer and layering from wear. Corrosion signs
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091674
EISBN: 978-1-62708-217-4
... and dichromate sealing. The interference fit of the bushing in the lug hole was discontinued. The bushings, with a sliding fit, were cemented in place in the lug holes. ...
Abstract
Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages were found cracked in service. The cracks were in the hinge lugs, adjacent to a bushing made of cadmium-plated 4130 steel. Investigation (visual inspection and 250X micrographs) supported the conclusion that the failure of the hinge brackets occurred by SCC. The corrosion was caused by exposure to a marine environment in the absence of paint in stressed areas due to chipping. The stress resulted from the interference fit of the bushing in the lug hole. Recommendations included inspecting all hinge brackets in service for cracks and for proper maintenance of paint. Also suggested was replacing the aluminum alloy 2015-T6 with alloy 7075-T6, and surface treatment for the 7075-T6 brackets was recommended using sulfuric acid anodizing and dichromate sealing. Finally, it was also recommended that the interference fit of the bushing in the lug hole be discontinued.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091690
EISBN: 978-1-62708-234-1
... B 154. The three manufacturers used different methods to solve the problem. One changed to copper ferrules and fastened them to the fuse tube with epoxy cement (copper has insufficient strength for crimping). Another changed the ferrule material to a copper-iron alloy. The third manufacturer began...
Abstract
A substantial number of copper alloy C27000 (yellow brass, 65Cu-35Zn) ferrules for electrical fuses cracked while in storage and while in service in paper mills and other chemical processing plants. The ferrules, made by three different manufacturers, were of several sizes. One commonly used ferrule was 3.5 cm long by 7.5 cm in diam and was drawn from 0.5 mm (0.020 in.) thick strip. Investigation (visual inspection, metallographic examination, and a mercurous nitrate test, which is an accelerated test used to detect residual stress in copper and copper alloys) of both ferrules from fuses in service and storage in different types of plants, and ferrules from newly manufactured fuses, supported the conclusion that the ferrules failed by SCC resulting from residual stresses induced during forming and the ambient atmospheres in the chemical plants. The atmosphere in the paper mills was the most detrimental, and the higher incidence of cracking of ferrules there was apparently related to a higher concentration of ammonia in conjunction with high humidity. Recommendations included specifying that the fuses meet the requirements of ASTM B 154.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001536
EISBN: 978-1-62708-229-7
... cracking (IGSCC) Nuclear power plants Nuclear reactor coolant piping Nuclear Pump seal wear rings Pump shaft cracking Stress corrosion cracking 304 UNS S30400 Cemented carbide Stress-corrosion cracking Dealloying/selective leaching 1. Introduction Approximately 113 nuclear electrical...
Abstract
Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001117
EISBN: 978-1-62708-214-3
... manner, pipe (casing) is lowered into the hole and cemented in place. This protects a segment of hole before drilling ahead. Each section of casing is about 12 m (40 ft) long, and they are joined by threaded couplings ( Fig. 1 ). Fig. 1 180 mm (7 in.) diam coupling for P-110 casing material...
Abstract
Several tin plated, low-alloy steel couplings designed to connect sections of 180 mm (7 in.) diam casing for application in a gas well fractured under normal operating conditions. The couplings were purchased to American Petroleum Institute (API) specifications for P-110 material. Chemical analysis and mechanical testing of the failed couplings showed that they had been manufactured to the API specification for Q-125, more stringent specification than P-110, and met all requirements of the application. Fractographic examination showed that the point of initiation was an embrittled region approximately 25 mm (1 in.) from the end of the coupling. The source of the embrittlement was determined to be hydrogen charging during tin plating. Changes in the plating process were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001668
EISBN: 978-1-62708-232-7
... system constructed of 316 stainless steel. The autoclave was used to cure special cements as part of an experimental program by providing a controlled pressure and temperature. A schematic representation of the charged system is shown in Figure 1 . At the time of failure, two systems were contained...
Abstract
A detailed investigative failure analysis was conducted on an autoclave which blew apart in a furnace for no apparent reason. Bolt failure resulted in separation of the autoclave lid and subsequent destruction of the furnace. Analysis using metallography, fractography, mechanical testing and exemplar tests were performed on the bolt material. Mechanical engineering analysis and leak-before-break criteria were extensively analyzed. Results led to only one possible conclusion: that an explosion occurred within the autoclave. Suggestions for autoclave design are presented as a result of the analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... prostheses are anchored by using a bone cement in a bed that has been mechanically prepared in the remaining bone. Recently, various designs have been developed for the cementless anchoring of prostheses by a tight fit. Certain prosthesis systems have porous surface coatings on their shafts to increase...
Abstract
This article commences with a description of the prosthetic devices and implants used for internal fixation. It describes the complications related to implants and provides a list of major standards for orthopedic implant materials. The article illustrates the body environment and its interactions with implants. The considerations for designing internal fixation devices are also described. The article analyzes failed internal fixation devices by explaining the failures of implants and prosthetic devices due to implant deficiencies, mechanical or biomechanical conditions, and degradation. Finally, the article discusses the fatigue properties of implant materials and the fractures of total hip joint prostheses.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... the UHMWPE tibial cup, which in turn is anchored to the tibia by means of a Ti-6Al-4V tibial tray. The tibial tray is anchored to the tibia either by a polymeric grouting agent known as acrylic bone cement (an admixture of polymethyl methacrylate/styrene copolymer beads, methyl methacrylate monomer...
Abstract
Total knee prostheses were retrieved from patients after radiographs revealed fracture of the Ti-6A1-4 VELI metal backing of the polyethylene tibial component. The components were analyzed using scanning electron microscopy. Porous coated and uncoated tibial trays were found to have failed by fatigue. Implants with porous coatings showed significant loss of the bead coating and subsequent migration of the beads to the articulating surface between the polyethylene tibial component and the femoral component, resulting in significant third-body wear and degradation of the polyethylene. The sintered porous coating exhibited multiple regions where fatigue fracture of the neck region occurred, as well as indications that the sintering process did not fully incorporate the beads onto the substrate. Better process control during sintering and use of subsequent heat treatments to ensure a bimodal microstructure were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001266
EISBN: 978-1-62708-215-0
... fatigue. Loads on the hip joint increase up to five times body weight during the heel-strike phase of walking. In addition, abnormal activity of the patient and/or deterioration of the fixation cement can result in increased stresses. Therefore, it is imperative that biocompatible materials of the highest...
Abstract
A cast stainless steel femoral head replacement prosthesis fractured midway down the stem within 13 months of implantation. Visual examination showed severe “orange peel” around the fracture on the concave side. This effect was not observed on the convex side, which suggested fatigue fracture. Metallographic examination of samples revealed an extremely large grain size and corroborated fatigue fracture. Chemical analysis indicated that the material conformed to the requirements for type 316L stainless steel. Substandard-size tensile bars machined from another prosthesis from the same manufacturer showing identical grain sizes were used for mechanical testing. Tensile tests indicated that the material did not meet the manufacturer's stated strength criteria in the portion of the stem that fractured. The failure was attributed to low strength, which resulted in fatigue. The extremely coarse grain size was considered a major factor in strength reduction.
1