Skip Nav Destination
Close Modal
Search Results for
Casting-related failures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 292 Search Results for
Casting-related failures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... of these. A design-related failure is one in which even a perfect casting (free from unexpected deficiencies and meeting specified requirements) does not perform to the requirements of the application. Correspondingly, a defect-related failure is one resulting from a condition that falls outside of the established...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... component misuse or abuse, or a combination of these—just as they do for wrought components. A design-related failure is one in which even a perfect casting (free from unexpected deficiencies and meeting specified requirements) does not perform to the requirements of the application, or the application...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047263
EISBN: 978-1-62708-218-1
... with the exhaust-gas flow chamber. No recommendations were made. Castings Cylinder heads Porosity Shrinkage Gray iron Casting-related failures An engine cylinder head failed after operating just 3.2 km (2 miles) because of coolant leakage through the exhaust port. Investigation The left-bank...
Abstract
An engine cylinder head failed after operating just 3.2 km (2 mi) because of coolant leakage through the exhaust port. Visual examination of the exhaust ports revealed a casting defect on the No. 7 exhaust-port wall. A 0.9x examination of an unpolished, unetched longitudinal section through the defect indicated shrinkage porosity. This defect was found to interconnect the water jacket and the exhaust gas flow chamber. No cracks were found by magnetic-particle inspection. The gray iron cylinder head had a hardness of 229 HRB on the surface of the bottom deck. The microstructure consisted of type A size 4 flake graphite in a matrix of pearlite with small amounts of ferrite. this evidence supported the conclusion that the cylinder-head failure resulted from the presence of a casting defect (shrinkage) on the No. 7 cylinder exhaust-port wall interconnecting the water jacket with the exhaust-gas flow chamber. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001014
EISBN: 978-1-62708-223-5
... of adequate tempering was the secondary cause. Castings Porosity Prestressed concrete Shrinkage Stretching Tools Carburizing steel Casting-related failures This tool is used to stretch reinforcement wires in prestressed concrete. Reinforcement wires are apparently inserted into a hole...
Abstract
A tool used to stretch reinforcement wires in prestressed concrete failed. All eight individual jaws were broken. Visual examination of the fracture surfaces indicated that about half of the broken parts had a partially dendritic appearance. Further, fracture surfaces near the exteriors of the parts were clean and smooth, and there was evidence of a case. Examination of the flat surfaces of the parts revealed surface cracking where actual failure had not occurred. Chemical analysis showed the material to be a low-alloy carburizing steel. The microstructure was compatible with a steel which is cast, carburized, quenched, and tempered. The structure was generally satisfactory, except for the presence of severe shrinkage porosity. It was concluded that the presence of shrinkage porosity in critical areas was the primary cause of fracture. Extremely high hardness indicating a lack of adequate tempering was the secondary cause.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001201
EISBN: 978-1-62708-232-7
... spot. This led to the conclusion that a shrinkage cavity was present. Metallographic examination confirmed that the fracture of the swivel head was caused or favored by a cavity. Castings Shrinkage Spindles Steel casting Casting-related failures The swivel head of a driving spindle...
Abstract
The swivel head of a driving spindle of a four-high mill fractured. The fracture originated in a darkly stained spot on the bottom of the cylindrical part and then continued into the cylinder walls in the two directions. The fracture topography was of dendritic structure at the stained spot. This led to the conclusion that a shrinkage cavity was present. Metallographic examination confirmed that the fracture of the swivel head was caused or favored by a cavity.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001016
EISBN: 978-1-62708-236-5
... not significant as far as its usage was concerned. The failure could have been avoided by providing support underneath the overhanging member. Freight transportation Motor trucks Packaging Presses Irons and steels Casting-related failures An automatic press for making burlap bags that had been...
Abstract
An automatic press for making burlap bags had been used for several years. The press failed after being shipped by truck for a distance of about 400 mi. The objective was to determine whether failure occurred during or before shipment. The large piece which broke off the press included a section of the ways and a heavy adjustable mechanism which normally rides on these ways. The weight of the broken section was estimated at several hundred pounds. There was no support for the broken piece beyond the point of breakage. The material was a commercial cast iron, and the largest proportion of the fracture area was fresh and bright. It was concluded that this was a fresh fracture which occurred during shipment, and the crack itself was not present prior to shipment. The fact that a material defect of some sort was present and probably determined the location of the crack was apparently not significant as far as its usage was concerned. The failure could have been avoided by providing support underneath the overhanging member.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001222
EISBN: 978-1-62708-225-9
... and were primarily responsible for the failure of the lift disk. Cracking (fracturing) Die castings Inclusions Porosity Aluminum brass Casting-related failures The full lift disk, made of die cast brass, which served as a lifting aid in a safety valve, had cracked in service at a number...
Abstract
A full lift disk, made of die cast brass, which served as a lifting aid in a safety valve, had cracked in service at a number of locations in the vicinity of the threaded hole. During microscopic examination, agglomeration of oxide inclusions were noted in the region of the cracks. Because the die cast brass was alloyed with aluminum, these inclusions consisted predominantly of aluminum oxide. The tolerable limit in pores and oxide inclusions was greatly exceeded in the lift disk under examination. Above all, the numerous oxide skins disrupted the cohesion of the microstructure and were primarily responsible for the failure of the lift disk.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0089543
EISBN: 978-1-62708-226-6
.... Bone screws Casting defects Screws Surgical implants ASTM F75 Casting-related failures Portions of the threads of the screw shown in Fig. 1(a) had broken off, and other threads had cracked. The screw was made from a cast Co-Cr-Mo alloy. A longitudinal section through the screw revealed gas...
Abstract
Threads of a bone screw (Co-Cr-Mo alloy, type ASTM F75) had broken off, and other threads had cracked. 15x sectioning showed porosity, and 155x magnification showed gas holes, segregation, and dissolved oxides. This supports the conclusion that manufacturing defects caused the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0048804
EISBN: 978-1-62708-230-3
... rates, and variation in tensile strength to be noted during inspection were described. Cracking (fracturing) Dryer rolls Paper machines Gray iron Casting-related failures (Other, general, or unspecified) fracture Unlike the individual examples of failures discussed throughout...
Abstract
Several cases of failures in gray cast iron paper machine dryer rolls were evaluated. The rolls were found have ground outer cylindrical surfaces on which the paper web is dried. They were found to rotate about their longitudinal axes at speeds from 50 to 250 rpm while containing saturated steam from 35 to 380 kPa. Failures were found to occur in the shell body, in a head near a hand hole or a manhole opening, or in a head near the journal-to-head interface. A cleavage fracture was revealed by scanning electron microscopy regardless of the driving stress for failure. Fracture surface were found to exhibit chevron marks typical of fatigue or raised points or tears pointing in the direction of the probable origin of failure. The characteristics of the thinwall cast iron structures like the variation in composition due to pouring from multiple ladles, variation in solidification rates, and variation in tensile strength to be noted during inspection were described.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090974
EISBN: 978-1-62708-235-8
..., and reevaluation of the casting design was suggested to minimize shrinkage. Brackets Castings Inclusions Manganese sulfide Shrinkage ASTM A148 grade 135-125 UNS D51250 Casting-related failures Brittle fracture A cast steel bracket manufactured in accordance with ASTM A 148 grade 135/125 failed...
Abstract
A cast steel bracket manufactured in accordance with ASTM A 148 grade 135/125 steel failed in railroad maintenance service. Ancillary property requirements included a 285 to 331 HB hardness range and minimum impact energy of 27 J (20 ft·lbf) at -40 deg C (-40 deg F). The conditions at the time of failure were characterized as relatively cold. Investigation (visual inspection, chemical analysis, and unetched 119x and 2% nital etched 119x SEM images) supported the conclusion that the bracket failed through brittle overload fracture due to a number of synergistic factors. The quenched-and-tempered microstructure contained solidification shrinkage, inherently poor ductility, and type II Mn-S inclusions that are known to reduce ductility. The macro and microscale fracture features confirmed that the casting was likely in low-temperature service at the time of failure. The composition and mechanical properties of the casting did not satisfy the design requirements. Recommendations included exerting better composition control, primarily with regard to melting, deoxidation, and nitrogen control. Better deoxidation practice was recommended to generate the more desirable Mn-S inclusion morphology, and reevaluation of the casting design was suggested to minimize shrinkage.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
... process. Foundry practice Gating and risering Housings Permanent mold castings Porosity A357 UNS A13570 Casting-related failures A concerted research effort undertaken to improve the strength properties of cast aluminum forward housing assemblies for guided munitions may improve...
Abstract
In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward housing assembly revealed tensile properties well below the allowable design values. Radiology and CT evaluations revealed no casting defects. Optical microscopy revealed porosity uniformly distributed throughout the casting on the order of 0.1 mm pore diam. Scanning electron microscopy revealed elongated pores, which indicated turbulent filling of the mold. Spherical pores would have indicated the melt had been improperly degassed. Based on these findings, it was recommended that the manufacturer analyze and redesign the gating system to eliminate the turbulent flow problem during the permanent mold casting process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089526
EISBN: 978-1-62708-218-1
.... Controlled pouring temperatures, improved design and use of chills were recommended to avoid the casting defects. Casting defects Cracking (fracturing) Cylinder heads Microporosity Shrinkage Gray iron Casting-related failures A cracked cylinder head was removed from an engine after...
Abstract
A gray iron cylinder head cracked after approximately 16,000 km of service. The head was cracked on the rocker arm pan rail next to the No. 3 intake port and extended into the water jacket on the rocker-arm side of the head. Microporosity was revealed in the crack in the sections taken from the water jacket next to the plug and the area next to the No. 3 intake port. A wave of microporosity travels midway between the inner and outer surfaces of the casting was observed and was concluded to have caused the cracking. The reasons and remedies for shrinkage porosity were discussed. Controlled pouring temperatures, improved design and use of chills were recommended to avoid the casting defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046233
EISBN: 978-1-62708-235-8
... and instituting receiving inspection of the connection castings. Castings Porosity Trailers Trucks Welded defects Welded joints Welded steel Joining-related failures Casting-related failures Fatigue fracture A drawbar connecting the two tank-type trailers of a highway gasoline rig broke while...
Abstract
A drawbar connecting two tank-type trailers of a highway gasoline rig broke while the rig was on an exit ramp of an interstate highway. The drawbar was a weldment of steel plates, tubes, and castings. Light fractography showed no discernable causes for the failure, but a TEM fractograph at 20,000x revealed fatigue striations and corrosion products on the fracture surface, indicating that this area was probably the site of fracture origin and that it had cracked before the accident happened. The casting on the right side of the drawbar contained large voids and a significant amount of porosity. Electron fractography established that the cast connection on the left side failed by brittle fracture. Metallographic examination showed poor weld quality in the casting-to-tube joint. Evidence found supports the conclusions that the drawbar fractured in fatigue, which originated in the weld joining the cast connector to the right side of the drawbar assembly. The crack initiated in a region of poor weld quality. A contributing factor to fracture of both connectors was the presence of voids and porosity in the castings. Recommendations included revising the welding procedures and instituting receiving inspection of the connection castings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089696
EISBN: 978-1-62708-220-4
... castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended. ASTM A148 grade 105-85 (Medium-carbon steel casting) UNS D50800 Joining-related failures Casting-related failures Fatigue fracture Background The cast steel...
Abstract
A failed crosshead of an industrial compressor was examined using optical and SEM. The crosshead was an ASTM A148 grade 105-85 steel casting. On the basis of the observations reported and available background information, it was concluded that the failure began with the initiation of cracks at slag inclusions and sharp fillets in weld-repair areas in the casting. The weld-repair procedures were unsatisfactory. The cracks propagated in a fatigue mode. he casting quality was judged unacceptable because of the presence of excessive shrinkage porosity. It was recommended that crosshead castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047220
EISBN: 978-1-62708-220-4
..., reheated to 870 deg C (1600 deg F), and oil quenched. The larger gear should be tempered to 200 to 240 HRB, and the smaller gear to 240 to 280 HRB. Gears Materials selection Oil pumps Residual stress 100-70-03 Class 40 UNS F34800 UNS F12801 Casting-related failures Brittle fracture...
Abstract
Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron with a tensile strength of 290 MPa (42 ksi) at 207 HRB. The smaller gear was sand cast from ASTM A536, grade 100-70-03, ductile iron with a tensile strength of 696 MPa (101 ksi) at 241 HRB. Analysis (metallographic examination) supported the conclusion that excessive beam loading and a lack of ductility in the gray iron gear teeth were the primary causes of fracture. During subsequent rotation, fragments of gray iron damaged the mating ductile iron gear. Recommendations included replacing the large gear material with ASTM A536, grade 100-70-03, ductile iron normalized at 925 deg C (1700 deg F), air cooled, reheated to 870 deg C (1600 deg F), and oil quenched. The larger gear should be tempered to 200 to 240 HRB, and the smaller gear to 240 to 280 HRB.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001284
EISBN: 978-1-62708-215-0
... dies, design Die castings Sporting goods AM60A UNS M10600 Casting-related failures Background Compound bow handle risers that had failed in service and during assembly along with an unassembled riser were submitted for analysis. The risers were die cast from magnesium-base alloy AM60A...
Abstract
Compound bow handle risers that had failed in service and during assembly along with an unassembled riser were submitted for analysis. The risers were die cast from magnesium-base alloy AM60A. Inspection of the failed risers and metallurgical investigations conducted on the stock riser revealed the presence of cold shuts at the same site in all specimens. It was recommended that all risers be thoroughly inspected and that the bow company work with their die casting shop to design a mold with acceptable filling characteristics.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089563
EISBN: 978-1-62708-217-4
... lever. Aircraft components Casting defects Castings Cold shuts Fuel control lever Nondestructive testing 410 UNS J91150 Casting-related failures The lever shown in Fig. 1 was a component of the main fuel-control linkage of an aircraft engine. After a service life of less than 50 h...
Abstract
A lever (machined from a casting made of AISI type 410 stainless steel, then surface hardened by nitriding) that was a component of the main fuel-control linkage of an aircraft engine fractured in flight after a service life of less than 50 h. Investigation (radiographic inspection) supported the conclusions that the lever broke at a cold shut extending through approximately 95% of the cross section. The normally applied load constituted an overload of the remainder of the lever. Recommendations included adding magnetic-particle inspection to the inspection procedures for this cast lever.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001089
EISBN: 978-1-62708-214-3
... that crosshead castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended. Compressors Porosity Repair welding Welded joints Welding parameters ASTM A148 grade 105-85 UNS D50800 Joining-related failures Casting-related failures...
Abstract
A failed crosshead of an industrial compressor was examined using optical and scanning electron microscope. The crosshead was an ASTM A148 grade 105-85 steel casting. On the basis of the observations reported and available background information, it was concluded that the failure began with the initiation of cracks at slag inclusions and sharp fillets in weld-repair areas in the casting. The weld-repair procedures were unsatisfactory. The cracks propagated in a fatigue mode. he casting quality was judged unacceptable because of the presence of excessive shrinkage porosity. It was recommended that crosshead castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001074
EISBN: 978-1-62708-214-3
... cavities. Investment castings Materials handling Nuclear reactor components Porosity Radioactive materials Servomechanisms Shrinkage 420 UNS S42000 Casting-related failures Background The yoke body pin of a master slave manipulator, a remote-controlled device used for handling...
Abstract
A cast housing, part of a multi-shaft yoking mechanism, failed during assembly and installation of the equipment in which it was to be used. The housing, or yoke body, was cast from AISI 420 grade ferritic stainless steel. Analysis revealed that the failure was caused by the presence of shrinkage cavities, which lowered the load-bearing capability. The failure occurred at the location where there was an abrupt change in the section thickness. A redesign to provide a smooth contour at the section junction was recommended along with optimization of casting parameters to avoid shrinkage cavities.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001029
EISBN: 978-1-62708-214-3
... originated in hot tear locations in the castings. Microprobe analysis of fracture surfaces in the hot tear region indicated a much higher silicon-to-aluminum ratio compared with the overload fracture area. No microstructural anomalies related to the failure were found during metallographic examination...
Abstract
Two investment-cast A356 aluminum alloy actuators used for handles on passenger doors of commercial aircraft fractured during torquing at less than the design load. Visual examination showed that cracking had occurred through a machined side hole. Fractography revealed that the cracks originated in hot tear locations in the castings. Microprobe analysis of fracture surfaces in the hot tear region indicated a much higher silicon-to-aluminum ratio compared with the overload fracture area. No microstructural anomalies related to the failure were found during metallographic examination. It was concluded that the strength of the castings had been compromised by the presence of the casting defects. Modification of the gating system for casting was recommended to eliminate the hot tear zone. It was also suggested that the balance of the castings from the same manufacturing lot be radiographically inspected.
1