Skip Nav Destination
Close Modal
By
I.B. Eryürek, M. Capa
By
Alan A. Johnson, David N. Johnson
By
S.M.R. Ziaei, A.H. Kokabi, J. Mostowfi
By
Dennis McGarry
By
D.A. Moore, K.F. Packer, A.J. Jones, D.M. Carlson
By
W.T. Becker
By
S. Srikanth, S.A.A. Akbari Mousavi, S. Sisodia, K. Ravi
By
Roger Lewis, Mohanad Zalzalah, Tom Slatter
By
Amitava Ray, M.S. Prasad, S.K. Dhua, S.K. Sen, S. Jha
Search Results for
Cast steel - 52
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 71
Search Results for Cast steel - 52
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fracture of the Bottom Platen of an 800 Ton Hydraulic Press
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001288
EISBN: 978-1-62708-215-0
... Abstract The side supporting flange of the bottom platen of an 800 ton hydraulic press fractured after 9 x 10's cycles under a maximum load of 530 tons. The platen material specified in the design was cast steel 52. Metallographic examination of the fracture surface indicated that the platen...
Abstract
The side supporting flange of the bottom platen of an 800 ton hydraulic press fractured after 9 x 10's cycles under a maximum load of 530 tons. The platen material specified in the design was cast steel 52. Metallographic examination of the fracture surface indicated that the platen had failed in fatigue as a result of a high stress concentration in a sharp 0.6 mm (0.02 in.) radius fillet. Stress analysis and fracture mechanics predictions revealed that there was also danger of fatigue failure for platens with the design radius of 10 mm (0. 4 in.) if the press operates at 800 tons. It was recommended that the remaining life of similar presses be assessed periodically controlling the cracks, their dimensions, and their propagation rates. An increase in the radius of the fillet was also recommended.
Image
Example of preferential oxidation of the grain boundaries in a cast high-te...
Available to PurchasePublished: 01 January 2002
Fig. 52 Example of preferential oxidation of the grain boundaries in a cast high-temperature alloy steel
More
Book Chapter
Interpretation of a “Rock Candy” Fracture Exhibited by a Steel Railroad Casting
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001665
EISBN: 978-1-62708-231-0
... that some copper was accidentally left in the mold when the casting was poured. Liquid copper, carrying with it oxygen in solution, penetrated the austenite grain boundaries as the steel cooled. The oxygen reacted with the steel producing a network of scale outlining the austenite grain structure. When...
Abstract
Following a freight train derailment, part of a fractured side frame was retained for study because a portion of its fracture surface exhibited a rock candy appearance and black scale. It was suspected of having failed, thereby precipitating the derailment. Metallography, scanning electron microscopy, EDXA, and x-ray mapping were used to study the steel in the vicinity of this part of the fracture surface. It was found to be contaminated with copper. Debye-Scherrer x-ray diffraction patterns obtained from the scale showed that it consisted of magnetite and hematite. It was concluded that some copper was accidentally left in the mold when the casting was poured. Liquid copper, carrying with it oxygen in solution, penetrated the austenite grain boundaries as the steel cooled. The oxygen reacted with the steel producing a network of scale outlining the austenite grain structure. When the casting fractured as a result of the derailment, the fracture followed the scale in the contaminated region thus creating the “rock candy” fracture.
Book Chapter
Failure Analysis: Sulfide Stress Corrosion Cracking and Hydrogen-Induced Cracking of A216-WCC Wellhead Flow Control Valve Body
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Book Chapter
Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... nucleation and propagation. In cast alloys, the presence of both microscale interdendritic porosity and macroscale shrinkage cavities provide “holes” for crack nucleation. There is little difference in void growth from shrinkage porosity and a hole containing an unbonded inclusion. The incipient crack...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Book Chapter
Failures Related to Casting
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Book Chapter
Problematic Failure Analysis of a Cast Steel Crankshaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
... Abstract This case study involves two continuously cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making...
Abstract
This case study involves two continuously cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making the steel, forging the shape, and preliminary heat treatment; and (3) a supplier that provided induction hardening, finish machining, and inspection. An independent engineering firm was subsequently involved, but because each party had its own agenda, there was no agreement on the metallurgical source of the failure and thus no continued analysis to pin down and eliminate the root cause.
Book
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Book Chapter
Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... amounts of plastic deformation. Two types of particles may be involved: inclusions and second phases. In poly-phase alloys, the presence of eutectic or eutectoid structures also affects crack nucleation and propagation. In cast alloys, the presence of both microscale interdendritic porosity...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Book Chapter
Metallurgical Investigation into the Incidence of Delayed Catastrophic Cracking in Low Nickel Austenitic Stainless Steel Coils
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
... steel castings, ingots, blooms, and slabs [ 5 ]. Incidences of catastrophic cracking in low nickel austenitic stainless steel coils at a customer’s end during routine unwinding/uncoiling of the material came to light in form of a customer complaint and prompted a thorough investigation. The coils...
Abstract
Several stainless steel coils cracked during a routine unwinding procedure, prompting an investigation to determine the cause. The analysis included optical and scanning electron microscopy, energy-dispersive x-ray spectrometry, and tensile testing. An examination of the fracture surfaces revealed a brittle intercrystalline mode of fracture with typical manifestations of clear grain facets. Branched and discrete stepwise microcracks were also found along with unusually high levels of residual hydrogen. Mechanical tests revealed a marked loss of tensile ductility in the defective steel with elongations barely approaching 8%, compared to 50% at the time of delivery weeks earlier. Based on the timing interval and the fact that failure occurred at operating stresses well below the yield point of the material, the failure is being attributed to hydrogen-induced damage. Potential sources of hydrogen are considered as are remedial measures for controlling hydrogen content in steels.
Book Chapter
Impact Wear Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... , 33 ). These are critical in determining the development of the white layer and the subsequent crack nucleation and wear debris formation. Work has shown that treatment of materials such as cast iron or stainless steel via techniques such as laser hardening ( Ref 34 , 35 ), induction hardening...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
..., shot peening, low-plasticity burnishing, hard turning, and gravity peening. These residual stresses can be measured via x-ray diffraction and included in life-prediction models. Case-Hardening Processes Now common in some bearing applications, these steels are initially cast with a relatively...
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection is often used for the protection of underground or underwater steel structures. The use of cathodic protection for long-term corrosion...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Book Chapter
Microstructural Features of Prematurely Failed Hot-Strip Mill Work Rolls: Some Studies in Spalling Propensity
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001532
EISBN: 978-1-62708-232-7
... , Warrendale, PA , 1992 , vol. 29 , pp. 193 – 205 . 7. Elliott R. : Cast Iron Technology , Butterworth and Co. Ltd. , London , 1988 , p. 25 . 8. Horvath P.J. : 22nd Mechanical Working and Steel Processing Conf. Proc., Iron and Steel Society , Warrendale, PA , 1980 , vol. 18...
Abstract
Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although spalling can be a culmination of roll material quality and/or mill abuse, the microstructure of a broken roll can often unveil intrinsic inadequacies in roll material quality that possibly accentuate failure. This is particularly relevant in circumstances when rolls, despite operation under similar mill environment, exhibit variations in roll life. The paper provides an insight into the microstructural characteristics of spalled ICED HSM work rolls, which underwent failure under similar mill operating environment in an integrated steel plant under the Steel Authority of India Limited. Microstructural features influencing ICDP roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... white cast iron (standard gray or ductile cast irons are poor), high-chromium (that is, 13 to 28%) alloy steel, cobalt-base superalloys such as Stellite, and special nickel-base alloys such as Ni-Hard. These materials are useful not only for the flow-path surfaces but also as sleeves in sealing areas...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... Particulate erosion of a ductile steel impeller by an abrasive catalyst. Original magnification: (a) 0.25×, (b) 1× Erosion-resistant metals include white cast iron (standard gray or ductile cast irons have poor resistance), high-chromium (that is, 13 to 28%) alloy steel, cobalt-base superalloys...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Book Chapter
Forms of Corrosion
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
..., such as magnesium or zinc, may be introduced into the galvanic assembly. The most active member will corrode while providing cathodic protection to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... specification is ASTM A-27, grade 70-40; other applicable specifications for carbon steel in turbines and pumps are A-216, grade WCB; A-516, grade 60; and A-283, grades A, B, C, and D. When higher strength is needed, cast martensitic stainless steels are specified. Many machines, especially high-head pumps...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Book Chapter
Examination of Damage and Material Evaluation
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... often results in a suppression of the surface features that are desired. Flexible fiber-optic lighting is often the most appropriate method of illumination. Figure 9 shows a view of the fracture surface of a tensile test specimen from a cast steel that has suffered embrittlement, resulting in a “rock...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... method of illumination. Figure 9 shows a view of the fracture surface of a tensile test specimen from a cast steel that has suffered embrittlement, resulting in a “rock candy” fracture. Fig. 9 Low-power light microscope view of a “rock candy” fracture in a tensile specimen taken from a cast...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
1