1-20 of 451 Search Results for

Case hardening

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 75 Geometric models of carbides formed during case hardening. (a) Massive carbide grain, 4000×. (b) Film carbide, 2000×. (c) Intergranular carbide, 4000×. Source: Ref 30 More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001214
EISBN: 978-1-62708-235-8
... Abstract A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer...
Image
Published: 01 January 2002
Fig. 92 Effect of hardening by plastic deformation. (a) Case-hardened surface. (b) Non-case-hardened surface. Both 243×. Source: Ref 30 More
Image
Published: 15 January 2021
Fig. 13 Comparison of carbon profiles of case-hardened and through-hardened bearing steels More
Image
Published: 01 January 2002
Fig. 89 Micrograph of grinding cracks in case-hardened 8620 steel showing small cracks (see small arrows) that passed through the hardened case to the core, and the burned layer on the surface (dark band with arrow at the left) that resulted in grinding burns. (Note: Nital and acidic ferric More
Image
Published: 01 December 1992
Fig. 7 Scanning electron micrograph of case-hardened core fracture boundary of second fracture surface. 235×. More
Image
Published: 01 December 1992
Fig. 8 Scanning electron micrograph of case-hardened fracture surface where local cleavage occurred. 2000×. More
Image
Published: 01 December 1993
Fig. 12 Microstructure of the case-hardened gear teeth, consisting of martensite and dispersed carbides along with a few manganese sulfide inclusions. The average hardness is 55 HRC. Nital etchant. (a) 154×(b) 616× More
Image
Published: 30 August 2021
Fig. 18 Cross sections of through- and case-hardened metallurgies. In practice, depending on the alloy, the through-hardened tooth hardness may vary slightly across the section. More
Image
Published: 30 August 2021
Fig. 23 Scuffing that occurred on startup of a case-hardened (59 HRC) gear More
Image
Published: 30 August 2021
Fig. 42 The origin of the fatigue cracks on this case-hardened pinion indicate there was a misalignment, and the red dye shows that it was present when the unit was manufactured. More
Image
Published: 01 December 2019
Fig. 27 Macroscopic view of failed case-hardened steel planetarygear from a centrifugal gear-box. Note the blackened inside diameter and temper colours at the end surface More
Image
Published: 01 June 2019
Fig. 1 Main-clutch stop arm of 8620 steel on which the case-hardened latch tip failed in service from brittle fracture because of low impact resistance and grinding burns. (a) View of stop arm showing location of fracture in latch tip, and detail showing original and improved designs of latch More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046028
EISBN: 978-1-62708-235-8
... in service were sent to the metallurgical laboratory for determination of the cause of failure. Fig. 1 Main-clutch stop arm of 8620 steel on which the case-hardened latch tip failed in service from brittle fracture because of low impact resistance and grinding burns. (a) View of stop arm showing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047793
EISBN: 978-1-62708-217-4
... Abstract Failure of a case hardened steel shaft incorporated fuel pump in a turbine-powered aircraft resulted in damage to the aircraft. The disassembled pump was found to be dry and free of any contamination. Damage was exhibited on the pressure side of each spline tooth in the impeller...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001209
EISBN: 978-1-62708-224-2
... an unkilled carbon-deficient steel, and were case hardened to a depth of 0.8 to 0.9 mm. The peripheral structure at the places not showing wear consisted of coarse acicular martensite with a high percentage of retained austenite. The links therefore were strongly overheated, probably directly heated during...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046195
EISBN: 978-1-62708-225-9
... and microstructural investigation supported the conclusion that the bushing fractured in fatigue because of a highly stressed case-hardened surface of unsatisfactory microstructure and subsurface nonmetallic inclusions. Cracks initiated at the highly stressed surface and propagated across the section as a result...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001094
EISBN: 978-1-62708-214-3
... were singular and intergranular with little branching. Secondary subsurface cracks suggested possible hydrogen embrittlement. The 410 screws had been introduced to replace conventional case-hardened carbon steel screws that conform to SAE specification J78. Carbon steel screws had a proven record...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
... Abstract A bull gear from a coal pulverizer at a utility failed by rolling-contact fatigue as the result of continual overloading of the gear and a nonuniform, case-hardened surface of the gear teeth. The gear consisted of an AISI 4140 Cr-Mo steel gear ring that was shrunk fit and pinned onto...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001248
EISBN: 978-1-62708-221-1
... Abstract Failure occurred in the teeth of a case-hardening Ni-Cr-Mo alloy steel spur gear in the transmission system of heavy duty tracked vehicles. The defects were in the nature of seizure on the involute profile. Scrutiny of the transmission system showed there might be choking...