1-20 of 220 Search Results for

Carbon-manganese steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 50 Lamellar tearing in the HAZ of a carbon-manganese steel corner joint. Etched with 2% nital More
Image
Published: 30 August 2021
Fig. 21 Lamellar tearing in the heat-affected zone of a carbon-manganese steel corner joint. 2% nital etch More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001150
EISBN: 978-1-62708-235-8
... Abstract A number of rotating blades in a diffuser at a sugar beet processing plant fabricated from rectangular bars cut from rolled carbon-manganese steel plate fractured brittlely. However, apparently identical blades underwent significant plastic deformation without fracture. Inspection...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001428
EISBN: 978-1-62708-224-2
... of the other one, a complete eyebolt was submitted for assessment. Microscopic examination indicated a medium carbon-manganese steel had been used for the lower screwed portion of the eyebolt. Failure may have been due to brittle fracture or to fatigue, both of which could have been initiated at cracks...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001067
EISBN: 978-1-62708-214-3
... Abstract The source of cracking in the circumferential weld seam in a JIS-SM50B carbon-manganese steel pipe used in a CO2 absorber was investigated, the absorber had been in service for 18 years. The seam had been weld-repaired twice, and the repair welds had been locally stress relieved...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001306
EISBN: 978-1-62708-215-0
... Abstract Failure of carbon-manganese steel wheel studs caused by improper tightening of the inner wheel nuts resulted in separation of a dual wheel assembly on a heavy truck. The benchmark pattern observed on the fracture surfaces of the studs evidenced fatigue cracks emanating from multiple...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001383
EISBN: 978-1-62708-215-0
... Abstract Several case-hardened and zinc-plated carbon-manganese steel wheel studs fractured in a brittle manner after very limited service life. The fracture surfaces of both front and rear studs showed no sign of fatigue beach marks or deformation in the form of shear lips that would indicate...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001141
EISBN: 978-1-62708-227-3
... Abstract During a refit of a twenty-year-old Naval destroyer, two cracks were found on the inside of the killed carbon-manganese steel hull plate at the forward end of the boiler room. The cracks coincided with the location of the top and bottom plates of the bilge keel. Metallurgical...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001146
EISBN: 978-1-62708-229-7
... that the material of the vent header met the mechanical and chemical properties of ASTM A516 Grade 70 carbon-manganese steel material and microstructures were consistent with this material. Fracture faces of the cracked pipe were predominantly brittle in appearance with no evidence of fatigue contribution. The NDTT...
Image
Published: 30 August 2021
Fig. 38 Fatigue strength as a function of slag inclusions for as-welded carbon-manganese steel More
Image
Published: 01 January 2002
Fig. 33 Quality bands for slag inclusions representing as-welded carbon-manganese steel More
Image
Published: 01 January 2002
Fig. 26 Pulsed GMAW spot weld showing porosity in dissimilar metal weldment; a copper-nickel alloy to a carbon-manganese steel using an ERNiCu-7 (Monel 60) electrode. Etchant, 50% nitric-50% acetic acid. 4× More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... worldwide. Materials selection for hydraulic machines, especially massive ones, is dictated, in large part, by economics and fabricability. Thus, most large hydroturbines and many large centrifugal pumps are constructed of carbon-manganese steels, typically 0.2% C and 1% Mn. The most common...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001752
EISBN: 978-1-62708-241-9
... contained a majority of small spherical particles consisting of nitrogen, boron, iron, carbon, and a small amount of oxygen. Some other dimples contained manganese sulfide precipitates. Fatigue samples machined from the ultra-low sulfur steel crankshaft failed internally at planar grain boundary facets...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... Abstract A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001257
EISBN: 978-1-62708-235-8
.... The uncracked pipe consisted of soft steel that obviously was made for this purpose, while the cracked pipe consisted of a strongly-hardenable steel which contained not only more carbon and manganese than customary but also a considerable amount of chromium. Therefore, the damage was caused by a mix-up...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0045903
EISBN: 978-1-62708-223-5
... Abstract A 230 mm (9 in.) thick casing, fabricated from ASTM 235-55 low-carbon steel, of a 450 Mg (500 ton) extrusion press failed after 27 years of service. Initial visual examination revealed an area that exhibited multiple origins and classic beach marks radiating out approximately 75 mm (3...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001585
EISBN: 978-1-62708-231-0
... fracture with short-term exposure to an oxygen-rich environment. Fracture features emanated from longitudinally-aligned inclusions rich in aluminum. Inclusions Rails (railroad) Carbon-manganese steel Mixed-mode fracture The National Transportation Safety Board simultaneously investigates...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001135
EISBN: 978-1-62708-219-8
... used in structural applications. Testing showed an increase in hardness and weight percent carbon and manganese in the banded region. Further testing revealed that the area containing the segregation and coarse grain structure had a lower than expected toughness and a transition temperature 90 deg F...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047508
EISBN: 978-1-62708-221-1
..., hydrogen embrittlement, or both. At subzero temperatures, the steel was below its ductile-to-brittle transition temperature. These circumstances suggest a brittle condition. Steps to avoid this type of failure: For cold conditions, the steel plate should have a low carbon content and a high manganese...