1-12 of 12 Search Results for

C71500

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091806
EISBN: 978-1-62708-219-8
... station condenser tubing cooled by seawater for two copper alloys, an aluminum brass alloyed with arsenic (UNS C68700, ASTM B111, or Cu-Zn-20Al DIN17660), and a cupronickel 70-30 alloy with iron added (C71500, ASTM B111, or Cu-Ni-30Fe DIN17665)) supported the conclusion that the failure was caused...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046469
EISBN: 978-1-62708-229-7
... on the alloy as a film and thereby hinder deposition of copper. For severely corrosive environments where dezincification occurs or for critical parts, copper nickels, such as copper alloys C70600 (10% Ni), C71000 (20% Ni), and C71500 (30% Ni) are used. ...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001044
EISBN: 978-1-62708-214-3
... tube sheet pair contained 5622 25 mm (1 in.) OD × 19 BWG × 14 m (45 ft) UNS C44300 inhibited admiralty brass tubes (total of 44,976 tubes) and 1102 25 mm (1 in.) OD × 19 BWG × 14 m (45 ft) UNS C71500 70Cu-30Ni tubes (total of 4408 tubes) in the air-removal section. Each bank of tubes was supported...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... than the grains and are more susceptible to attack. Another form of denickelification is shown in Fig. 7(c) for a copper alloy C71500 (copper nickel, 30%) heat-exchanger tube. Fig. 7 Copper-nickel alloy heat-exchanger tubes that failed from denickelification due to attack by water and steam...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
.... When impingement attack occurs in heat-exchanger or condenser tubing, it is usually confined to a short distance on the inlet end of the tube where the fluid flow is turbulent. Impingement attack can be controlled by use of corrosion-resistant alloys, such as copper alloy C71500 (copper nickel, 30...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1